MAHATMA GANDHI UNIVERSITY School of Biosciences

Priyadarsini Hills P. O., Kottayam - 686560

Learning Outcomes based Curriculum Framework (LOCF) for Post Graduate Programme

MSc Biochemistry

Under the CSS scheme for University (EFFECTIVE FROM 2020 ADMISSIONS)

Preface

Mahatma Gandhi University

Mahatma Gandhi University is an Indian collegiate public University based in Kerala, established in 1983, approved by UGC, and accredited with NAAC "A" Grade, 3.24 CGPA. With its academic excellence, the University has bagged Chancellor's Award twice for the best University (2015-16 and 2017-18) within the state of Kerala. It has also secured 30th position in NIRF ranking (April 2019) and 11th position in India Today-MDRA ranking, 2018. CSIR has ranked the University 13th for its intellectual productivity and NISTADS has rated it as 19th in terms of h-index.

At present, Mahatma Gandhi University offers research programs in forty disciplines through its own Schools and approved Research Centers. It has close collaboration for academic, research and extension programs with a number of national agencies and institutions including the UGC, DST-FIST, DRS, ISRO, COSIT, DIT, DST (Nano Mission), CSIR, DAAD, STEC, ICMR, BARC and MOEF. The University is also involved in active collaboration with research institutions of international reputation such as the Max Planck Institute of Technology, Germany; Brown University, USA; University of Nantes, France; California Institute of Technology, USA; University of Toronto, Canada; Catholic University, Belgium; Heidelberg University, Germany; the Institute of Political Studies, Rennes, France; Trent University, Canada; IPF Dresden, Germany; University of Paris and University of Strasbourg.

Mahatma Gandhi University has made immense strides in the fields of inter disciplinary teaching and research. The faculty comprises of outstanding scholars, many of whom have made original contributions in their respective fields of specialization. The faculty and research scholars of several departments have gained widespread recognition for the commendable quality of their research publications. The web enabled University library has large collection of books, journals, e-journals and online theses. The digital library provides open access to its enviable collection of digitized Ph.D dissertations. All these work in tandem with the academic business transacted by the University, making the whole experience a holistic one. The University has a well established instrumentation facility with many sophisticated equipments functioning at the various departments and also at the platform provided by the common Inter University Instrumentation Centre (IUIC).

The University has well established and internationally reputed facility and academic expertise in various areas like Nanoscience, Environmental science, Bioscience, Chemical science, Physics, Arts and Humanities. The Centre for Nanoscience and Nanotechnology focus on the enhancement of research and higher studies in the cutting edge areas of Nanoscience and Nanotechnology. The Centre is motivated to thrust its research and development focusing on developing novel materials and devices prospering the outrage of Nanoscience. With a vision to consolidate the existing and to pay focus attention to the frontier areas of Environmental Science, the University has established the School of Environmental Sciences as a Centre of learning for advanced studies in different branches of environmental science. The major mandate of the School is to develop appropriate technologies and skilled human resource for sustainable utilization, management and conservation of natural resources. The school has established a Centralized Remote Sensing and GIS facility, the first of its kind in a University in the state, with the support of Indian Space Research Organization (ISRO). It has also established a regional center, the Highrange Environmental Research center (HERC) at Nedumkandam, Idukki district. The School has a live laboratory named as "Jeevaka" which consists of areas with rich biodiversity within the Mahatma Gandhi University Campus.

Vision and Mission of MGU

Vision of Mahatma Gandhi University

"Mahatma Gandhi University envisions to excel in the field of higher education and cater to the scholastic and developmental needs of the individual, through continuous creation of critical knowledge base for the society's sustained and inclusive growth."

Mission of Mahatma Gandhi University

- To conduct and support undergraduate, postgraduate and research-level programmes of quality in different disciplines
- To foster teaching, research and extension activities for the creation of new knowledge for the development of society
- To help in the creation and development of manpower that would provide intellectual leadership to the community
- To provide skilled manpower to the professional, industrial and service sectors in the country so as to meet global demands
- To help promote the cultural heritage of the nation and preserve the environmental sustainability and quality of life
- To cater to the holistic development of the region through academic leadership

Preamble

OUTCOME BASED EDUCATION (OBE)FROM THE ACADEMIC YEAR 2020-21 MAHATMA GANDHI UNIVERSITY SCHOOL OF BIOSCIENCES

Introduction

A high priority task in the context of education in India is improvement of quality of higher education for equipping young people with skills relevant for global and national standards and enhancing the opportunities for social mobility. Mahatma Gandhi University has initiated an Outcome Based Education (OBE) for enhancing employability of graduates through curriculum reforms based on a learning outcomes-based curriculum framework, upgrading academic resources and learning environment.

Learning outcomes specify what graduates completing a particular programme of study are expected to know, understand and be able to do at the end of their programme of study. The fundamental premise underlying the learning outcomes-based approach to curriculum development is that higher education qualifications are awarded on the basis of demonstrated achievement of outcomes, expressed in terms of knowledge, understanding, skills, attitudes and values. Outcomes provide the basis for an effective interaction among the various stakeholders. It is the results-oriented thinking and is the opposite of input-based education where the emphasis is on the educational process.

Benefits of OBE

1. The OBE Framework is a paradigm shift from traditional education system into OBE system where there is greater focus on programme and course outcomes. It guarantees that curriculum, teaching and learning strategies and assessment tools are continuously enhancedthrough a continuous improvement process. All decisions including those related to curriculum, delivery of instruction and assessment are based on the best way to achieve the predetermined outcomes. Traditionally, educators have measured learning in terms of standardised tests. In contrast, outcome-based education defines learning as what students can demonstrate that they know.

Benefits of OBE:

*More directed & coherent curriculum.

*Graduates will be more "relevant" to industry & other stakeholders (more well-rounded Graduates)

*Continuous Quality Improvement is in place.

*OBE shifts from measuring input and process to include measuring the output (outcome)

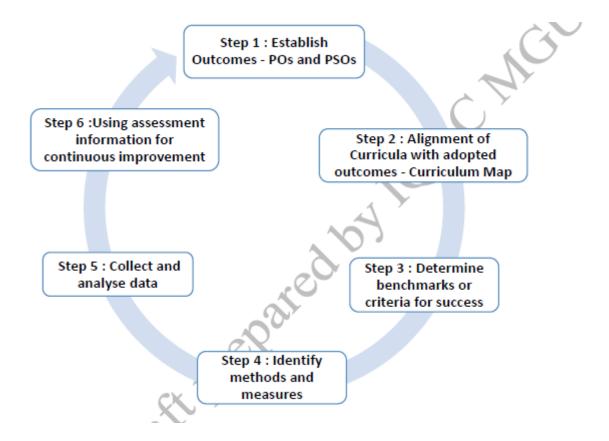
Outcome Based Education (OBE) process

OBE is a comprehensive approach to organise and operate a curriculum that is focused on and defined by the successful demonstrations of learning sought from each learner. The term clearly means focusing and organising everything in an education system around "what is essential for all learners to be able to do successfully at the end of their learning experiences".

OBE is an approach to education in which decisions about the curriculum and instruction are driven by the exit learning outcomes that the students should display at the end of a programme or a course. By the end of educational experience, each student should have achieved the outcomes.

Learning Outcomes based Curriculum Framework (LOCF) for Post Graduate Programmes-

IQAC MG University


One of the main objectives of OBE is to ensure continuous improvement of programmes in terms of maintaining the relevance in curriculum as well as responding to the requirements of the stakeholders. In other words, it ensures that Post graduate programme next year is better than Post graduate programme this year, offered by a department.

An OBE system has been proposed and to be implemented at various Departments of Mahatma Gandhi University, as a quality-assurance approach to improve teaching and learning outcomes and processes. This OBE plan incorporates the "outcomes assessment" process to be followed in the departments. OBE should be a key driver of the curriculum management in all the departments of the university.

The OBE is a 6 step process as shown in the figure

Figure: OBE Process

The process is presented as a cycle or a loop. The cycle represents the continuous nature of assessing learning outcomes.

As envisaged by the IQAC of Mahatma Gandhi university, an OBE based curricular framework has been proposed for the School of Biosciences from the academic year 2020-2021 which is presented hereafter.

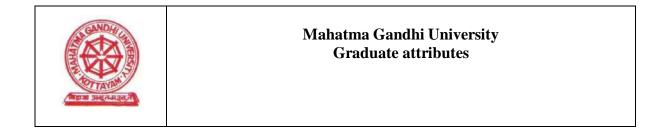
School of Biosciences

The Life Science research of the University is carried out under the School of Biosciences, which is another prestigious department of the University and it provides academic expertise to students in advanced areas of Biochemistry, Microbiology, Biotechnology and Biophysics. The established research areas at School of Biosciences specifically include the Bioprocess technology, toxicology, ethnopharmacology, inflammation, ecology, ecotechnology, agricultural microbiology, immunobiology, medicinal plant research, probiotic development, microbial and natural product research, molecular microbiology etc. The department har bours a state -of-the-art instrumentation facility, animal maintenance facility and animal cell culture facility as well. The institute has been a successful aspirant in producing a large number of PhDs, and has completed several funded projects with significantnumber of publications.

Our Vision

* An Institution of excellence developing professional competence, ambition and determination in students to face new challenges and find new opportunities in the field of Biological Sciences and facilitating the wellbeing and prosperity of mankind especially our Mother Land by utilising the opportunities in advanced Biological research.

Key points


- 1. Institution of excellence
- 2. Professional competence, ambition and determination
- 3. New challenges and new opportunities
- 4. Well being and prosperity of nation and humanity
- 5. Utilise opportunities in research

Our Mission

- * To provide advanced knowledge and technological knowhow to the students in the field ofBiological sciences.
- * To utilise the expertise of faculty in diverse areas of biology for benefitting the students inachieving their career goals.
- * To conduct cutting-edge research in areas of life Sciences and to extend the knowledge gained from lab to land and benchtop to bedside.

Key points

- **1.** provide advanced knowledge and technological knowhow
- **2.** To utilise the expertise of faculty
- **3.** benefitting the students in achieving their career goals.
- 4. conduct cutting-edge research
- 5. extend the knowledge gained from lab to land and benchtop to bedside.

	Critical thinking and analytical reasoning	Capability to analyze, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.
ad to	Scientific reasoning and Problem solving	Ability to analyze, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualize into researchand apply one's learning to real life situations.
	Multidisciplinary/ Interdisciplinary/ Transdisciplinary approach	Acquire interdisciplinary /multidisciplinary/ transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative- multidisciplinary/interdisciplinary/transdisciplinary- approach for formulate constructive arguments and rational analysis for achieving common goals and

		objectives.
	Intra and Interpersonal skills	Ability to work effectively and respectfully with diverse teams;facilitate collaborative and coordinated effort on the part of a group,and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team; lead the team to guide people to the right destination, in a smooth and efficient way.
8 8 8 8 8	Digital literacy	Capability to use ICT in a variety of learning situations, demonstrate ability to access, choose, collect and evaluate, and use a variety of relevant information sources; structure and evaluate those data for decision making.
	Global Citizenship	Building a sense of belonging to a common humanity and to become responsible and active global citizens. Appreciation and adaptation of different sociocultural setting and embrace and promote equity.
(n) (1)	Social competency	Possess knowledge of the values and beliefs of multiple cultures, appreciate and adapt to a global perspective; and capability to effectively engage in a multicultural society and interact respectfully, manage and lead with diverse groups.
 	Equity, Inclusiveness and Sustainability	Appreciate and embrace equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity
Ĵ	Lifelonglearning	Continuous acquisition of knowledge and skills. Learn, unlearn and re-learn based on changing ecosystem. "Learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self- directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Mahatma Gandhi University Programme Outcome

Programme Outcomes (PO)

PO 1: Critical Thinking and Analytical Reasoning

Capability to analyse, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.

PO 2 : Scientific Reasoning and Problem Solving

Ability to analyse, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into researchand apply one's learning to real life situations.

PO 3: Multidisciplinary/Interdisciplinary/Transdisciplinary Approach

Acquire interdisciplinary /multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary/interdisciplinary/transdisciplinary-approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills

Ability to reflect and express thoughts and ideas effectively in verbal and nonverbal way; Communicate with others using appropriate channel; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner and articulate in a specific context of communication.

PO 5: Leadership Skills

Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating a goal, building a team who can help achieve the goal, motivating and inspiring team members to engage with that goal, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 6: Social Consciousness and Responsibility

Ability to contemplate of the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for

attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability

Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity, managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning

Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work and living as a dignified person in the society.

PO 9: Networking and Collaboration

Acquire skills to be able to collaborate and network with scholars in an educational institutions, professional organizations, research organizations and individuals in India and abroad.

PO 10: Lifelong Learning

Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed atpersonal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Programme Outcome of MSc courses in School of Biosciences (PO)

To develop competent personnel in applied branches of life sciences with good academic standards, skill, technical knowhow, research aptitude, scientific ethics and societal consciousness.

Programme specific outcomes of M. Sc Biochemistry (PSO)

Program specific outcomes for M. Sc. Biochemistry: On completion of the program, the studentshould be able to

- PSO1: Acquire the knowledge and skills necessary for understanding the basic structural andfunctional aspects of various biochemical processes in the complex living system.
- PSO2: Apply the knowledge and skills to solve research problems in Biochemistry and alliedareas.
- PSO3: Develop awareness on maintaining quality assurance in various practical areas ofBiochemistry.
- **PSO4:** Generate the ability to use modern tools and methods to work in related industry andhealth sectors.

SCHEME OF MSc BIOCHEMISTRY PROGRAMME

Sl No	Course Code	Course Title	Credits
1	SBS M PC 01	Biochemistry	3
2	SBS M P C 02	Microbiology	3
3	SBS M P C 03	Cell Biology, Genetics & Evolution	3
4	SBS M P C 04	Biophysics & Biostatistics	3
5	SBS M P C 05	Physiology	3
6	SBS M P C 06	Laboratory Course – 1	3
7	SBS M P C 07	Laboratory Course – 2	3
		Total Credits of the First Semester Programme	21

	SCHEME	OF SECOND SEMESTER (Total 21 Credits)	
8	SBS M P C 08	Immunology	3
9	SBS M P C 09	Molecular Biology and Genetic Engineering	3
10	SBS M P C 10	Metabolism and Bioenergetics	3
11	SBS M P C 11	Biophysical Techniques and Bioinstrumentation	3
12	SBS M P C 12	Laboratory Course – 3	4
		One elective Ccurse to be selected from the optionsgiven below	3
	1	Total Credits of the 2 nd Semester Programme	21
	ELECTIVE	COURSES OFFERED BY DIFFERENT TEACHER IN THE 2 nd SEMESTER	RS
13	SBS M P E 13	Microbial Technology	3
14	SBS M P E 14	Ecology and Environment	3
15	SBS M P E 15	Neurobiology	3
16	SBS M P E 16	Environment Science	3

17	SBS M P E 17	Molecular Microbiology	3
18	SBS M P E 18	Developmental Biology	3

20SBS M P C 20Clinical Biochemistry21SBS M P C 21Pharmaceutical Biochemistry22SBS M P C 27Laboratory Course-4 Biochemistry	Sl No	Course No	Subject of the Course	Credit		
21SBS M P C 21Pharmaceutical Biochemistry22SBS M P C 27Laboratory Course-4 Biochemistry	19	SBS M P C 19	Enzymology	3		
22 SBS M P C 27 Laboratory Course-4 Biochemistry	20	SBS M P C 20 Clinical Biochemistry				
	21	SBS M P C 21 Pharmaceutical Biochemistry				
Course taken by the student from Open course	22	SBS M P C 27 Laboratory Course-4 Biochemistry				
other departments		Course taken by the student from Open course other departments				
One Elective Course to be selected from the options given below						

	ELECTIVE COURSES OFFERED BY DIFFERENT TEACHERS IN THE 3RD SEMESTER						
31	SBS M P E 42	Quality Control in Herbal Drugs	3				
32	SBS M P E 43	IPR and Patenting	3				
33	SBS M P E 44	Advanced Techniques in Diagnostic Microbiology	3				
34	SBS M P E 45	Radiation Biophysics	3				
35	SBS M P E 46	Algal Biofuel Technology	3				

	Course No.	Subject of the Course	Credits
23	SBS M P O 34	Biotechnology and Society	4
24	SBS M P O 35	Microbiology in Everyday Life	4
25	SBS M P O 36	Environment Lead Auditor Course	4
26	SBS M P O 37	System Biology	4
27	SBS M P O 38	Sustainable Agriculture	4
28	SBS M P O 39	Ecology of Soil Fertility	4
29	SBS M P O 40	Infectious Disease Management	4
30	SBS M P O 41	Probiotics and Nutraceuticals	4

SCHEME OF THIRD SEMESTER OPEN ELECTIVE COURSES

Sl No	Course No	Subject of the Course	Credit
36	SBS M P C 47	Plant Biochemistry	3
37	SBS M P C 48	Laboratory Course-5 Biochemistry	4
38	SBS M P C 49	Major Research Project	7
	Elective 1	To be selected from the options given	3
	Elective 2	To be selected from the options given	3
	Total Credits of the	e 4 th Semester Programme in M Sc	20

	SCHEME OF FOURTH SEMESTER ELECTIVE COURSES					
	Students	s need to select any two of the following elective courses				
39	SBS M P E 59	Environment Biotechnology	3			
40	SBS M P E 60	Omics in Biotechnology	3			
41	SBS M P E 61	Molecular Phylogeny	3			
42	SBS M P E 62	Plant Microbe Interactions	3			
43	SBS M P E 63	Human Virology	3			
44	SBS M P E 64	Physiological Biophysics	3			
45	SBS M P E 65	Good Laboratory Practices	3			
46	SBS M P E 66	Medical Biophysics	3			
47	SBS M P E 67	Biofertilizers and Biopesticides	3			
48	SBS M P E 68	Health and Nutrition	3			
49	SBS M P E 69	Neutrophil Biology	3			
50	SBS M P E 70	Medicinal Plants	3			

MAHATMA GANDHI UNIVERSITY

SBS M PC 01: BIOCHEMISTRY

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry/M	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics				
Course Name	BIOCHEMISTRY					
Type of Course	Core	Core				
Course Code	SBS M PC 01					
Course Summary & Justification	The course is designed to get a clear idea on the basic biomolecules and their importance in the various biochemical processes in life so that the course builds a base for the students to comprehend and articulate the advanced concepts in life sciences.					
Semester	First					
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHours
	Eg. Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding of biology and physiology		l groups	and bond	ing; basi	cs of cell

O No.	Expected Course Outcome	Learning Domains	PSO No.
1	To identify the different types of biomolecules such as lipids, carbohydrates, proteins and nucleic acids	U	
2	To differentiate the structural and functional characters of different biomolecules	А	
3	To narrate the coordinated functions of different biomolecules in a complex living system	A/Ap	
4	To compare the structure and functions of biomolecules in plants, animals and microbes	А	

5	To describe the structure and functions of vitamins and hormones	U	
* D			

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module No	Module Content	Credits	Hours
1	Carbohydrates: Classification of Carbohydrates with examples- monosaccharides, disaccharides and oligosaccharides; their structure and functions; Polysaccharides - occurrence, structure, isolation, properties and functions of homoglycans- starch, glycogen, cellulose, dextrin, inulin, chitins, xylans, arabinans, galactans. Occurrence, structure, properties, and functions of heteroglycans – bacterial cell wall polysaccharides, glycoaminoglycans, agar, alginic acid, pectins, amino sugars and deoxv sugars, blood group substances and sialic acids. Glycolipids and Glycoproteins and their biological applications. Lectin- structure and functions.	0.5	10
2	Lipids: Classification of lipids with examples; their structure and functions Complex lipids- phospholipids -classification, structure and functions. Ceramides and sphingomyelins. Eicosanoids, structure and functions of prostaglandins, thromboxanes, leukotrienes Types and functions of plasma lipoproteins. Amphipathic lipids -membranes, micelles, emulsions and liposomes. Steroids -cholesterol structure and biological role -bile acids, bile salts. Sterols in Plant system: Phytohormones: Brassinosterroids (functions); Sterols in microbial system: mycosterols.	0.5	10
3.	Proteins: Amino acids- Structure and properties, Classification of proteins on the basis of solubility and shape, structure, and biological functions. Isolation, fractionation and purification of proteins. Denaturation and renaturation of proteins. Primary structure -determination of amino acid sequence of proteins. Ramachandran plot, Secondary, tertiary and quartenary structures of proteins. Detailed study on structure and function with an example: Fibrous Protein (Collagen) Globular protein (Hemoglobin)., Enzymes- Different classes and functions.	0.5	10
4	Nucleic Acids: Components of nucleic acids, Watson -Crick model of DNA structure. A, B and Z DNA Cruciform structure in DNA, miscellaneous alternative conformation of DNA. Higher order organization of DNA. Methods for nucleic acid sequence determination, isolation and purification of DNA, molecular hybridization, Cot value curve, Reassociation kinetics, RNA Structure: Types of RNA; structure of mRNA,	0.5	10

			Г
	tRNA and rRNA, Si RNA, micro RNA with emphasis on importance of structure to its function		
5	Vitamins and Hormones: Vitamins -water soluble -thiamine, riboflavin, niacin, pyridoxine, folic acid, ascorbic acid-source, structure, biochemical functions, deficiency diseases, daily requirements; fat soluble -vitamin A, vitamin D2, vitamin E and vitamin K -sources, structure, biochemical functions, deficiency diseases, daily requirements. Hormones: different types, structures, their biological role and disorders. Mechanism of action of peptide and steroid hormones.	1.0	20
	Total Credits of the Course	3	60
	Books for Reference	1	
Pu 71	ochemistry 6th Edition (2007) by Jeremy M.berg John L.tymocz blisher: B.i.publicationsPvt.Ltd ISBN: 071676766X ISBN-13: 9786 6767664 Lehninger Principles of Biochemistry, Fourth Edition by David L. N Cox Publisher: W. H. Freeman; Fourth Edition edition (April 23, 0716743396 ISBN-13: 978-0716743392	071676760 Jelson Mic	64, 978- chael M.
Furth •	er Reading: Biochemistry: A Students survival Guide by Hiram. F. Gilbert ((2002) Pu	blishers:
•	McGraw-Hill ISBN 0-07-135657-6 Introduction to Biophysics by Pranab Kumar Banerjee (2008) Publis Company ltd ISBN: 81-219-3016-2	shers: S. C	Chand &
•	E.S. West, W.R. Todd, H.S. Mason and J.T. van Bruggen, Biochemistry , Oxford and IBH Publishing Co., New Delhi, 1974 Biochemistry [with Cdrom] (2004) by Donald Voet, Judith G. Voe		
•	Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 9 Principles Of Biochemistry (1995) by Geoffrey L Zubay, William E Vance Publisher: Mcgraw-hill Book Company – Koga ISBN: 06 13: 9780697142757, 978-0697142757	978-04711 W Parson,	93500 , Dennis
•	Molecular Biology of the Cell by Bruce Alberts, Alexander Johns Martin Raff, Keith Roberts, Peter Walter Publisher: Garland Science 10: 0815341059 ISBN-13: 978-0815341055	e; 5 edition	n ISBN-
•	Genes IX by Benjamin Lewin (2008) Publisher: J&b ISBN:0763' 9780763752224, 978-0763752224		
•	Molecular Biology Of The Gene 5/e (s) by James D Watson, Tania P Bell (2008) Publisher: Dorling Kindersley (India) Pvt Ltd IS ISBN-13: 9788177581812, 978-8177581812	BN: 8177	7581813
•	Cell and Molecular Biology, 3e (2003) by Karp ISBN: 0471268909 ISBN-13: 9780471268901, 978-0471268901	Publishe	er: Jw

Molecular Cell Biology (2002) by H.S. Bhamrah Publisher: Anmol Publications ISBN: 8126111429 ISBN-13: 9788126111428, 978-8126111428

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks B. Semester End examination – 60 marks

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
तिताया अप्रृतमप्रनुत	SBS M P C 02: MICROBIOLOGY

SchoolName	School of Biosciences
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics
Course Name	MICROBIOLOGY
Type of Course	Core

Course Code	SBS M P C 02					
Course Summary & Justification	s course on Microbiology introduces the milestones of Microbiology key components and their functions. objective of the course content is to impart Knowledge on Landmark discoveries in Microbiology and different domains classification of living organisms. develop a very good understanding of the characteristics of different types of microorganisms, methods to organize/classify these into and basic tools to study these in the laboratory.					
Semester	First					
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of General mic	crobiolog	S Y	1		<u>.</u>

COURSE OUTCOMES (CO)

ons made by prominent scientists acterial taxonomy crobial structure and similarities and bus groups of microorganisms to study these in the laboratory	E U/ An S	
ous groups of microorganisms		
to study these in the laboratory	S	
rs affecting the microbial growth ements and will be acquainted with microbial growth	U/R	
for identification and sterilization nisms.	An	
he interactions and characteristics	An/ C	
-		

COURSE CONTENT

Module	Module Content	Credits	Hrs
No			

1	History and scope of microbiology: The historical foundations and development of microbiology. An overview of microbial	0.5	10
	world. The bacteria and the archae. Classification of bacteria and		
	Archaea according to the Bergey's Manual of Systematic		
	Bacteriology. Tools for Systematics: Numerical taxonomy,		
	Phylogenetic analysis, Polyphasic approach; Modern methods of		
	studying microbial diversity; Microbial culture collections.		
2	Microbial Diversity: Prokaryotic and eukaryotic microbial	1.0	20
	diversity.General characteristics of various groups of prokaryotes:		
	bacteria including, Rickettsiae, Chlamydiae and Actinomycetes,		
	Cyanobacteria and Mycoplasmas. Morphology and structure of		
	bacteria. Viruses unique properties, morphology, structure and		
	cultivation; Viroids and Prions. Viral replication. Viral diversity-		
	bacterial, plant and animal viruses; Fungi - properties and		
	classification. Microorganism in extreme environments		
3.	Microbial physiology: Factors influencing microbial growth.	1.0	20
	Environmental and nutritional factors. Nutritional types of		
	bacteria. Microbial growth curve. Mathematical expression of		
	growth- continuous and batch cultures. Diauxic and synchronous		
	growth. Measurement of bacterial growth. Cultivation of bacteria-		
	culture media and methods. Aerobic and Anaerobic culture		
	methods. Culture preservation techniques. Microbial locomotion –		
	flagellar motility, gliding motility and amoeboid motion.		
4	Chemotaxis, Phototaxis and other taxes. Microbial photosynthesis. Identification of bacteria and Sterilization methods:	0.5	10
4	Identification of bacteria and Sterinization methods: Identification of bacteria. Staining reactions. Cultural,	0.5	10
	physiological and biochemical properties. Molecular methods for		
	identification. Sterilisation – Principles and methods, physical and		
	chemical methods. Disinfectants – modes of action. Testing of		
	disinfectants. Antibiotics – mechanism of action. Drug resistance		
	in bacteria. Antibiotic sensitivity tests		
	Total Credits of the Course	3	60

Teachingand LearningApp	Classroom Procedure (Mode of transaction)			
roach	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/ Group representative			
Assessment Types	Mode of Assessment			
	C. Continuous Internal Assessment (CIA)			
	1. Internal Tests of maximum 20 marks			
	2. Seminar Presentation $-a$ theme is to be			
	discussed and identified to prepare a paper and			
	present in the seminar Maximum marks 10			
	3. Write a detailed report on a given topic based on			
	research findings and literature search -10			

marks	8
D. Semester End examinat	ion – 60 marks

References

Comp	ulsory Reading:		
1.	Prescott, L. M., Harley, J. P. and Klein, D. A.2014. <i>Microbiology</i> . 9 th Edition. Edition, McGraw Hill Higher Education.		
2.	. Pelczar, M. J. Jr., Chan, E. C. S. and Krieg, N. R. 1993. <i>Microbiology</i> , 5 th Edition, Tata MacGraw Hill Press.		
	er Reading:		
1.	Jeffrey C. Pommerville .2016.Alcamos fundamentals of microbiology. Tenth Edition.		
_	Jones and Bartlett Learning.		
2.	Tortora G. J., Funke B. R. and Case C. L. 2015. <i>Microbiology: An Introduction</i> . 12 th		
	Edition. Pearson Education Inc.		
3.	Madigan, M. T. and Martinko, J. M. 2015. Brock's Biology of Microorganisms. 14th		
	Edition. Pearson Education Inc.		
4.	.Willey, J. M., Sherwood, L. M. and Woolverton, C. J. 2013. <i>Prescott's Microbiology</i> . 8 th Edition, McGraw-Hill Higher Education.		
5.	Stanier, R. Y., Adelberg, E. A. and Ingraham, J. L. 1987. <i>General Microbiology</i> , 5 th Edition. Macmillan Press Ltd.		
6	Russell, A. D., Hugo, W. B., and Ayliffe, G. A. J. 2013. <i>Principles and practice of</i>		
5.	<i>disinfection, preservation and sterilization</i> , 5 th Edition. Blackwell Science, Oxford.		
7	Black, J. G. 2013. <i>Microbiology: Principles and Explorations</i> . 6 th Edition, John Wiley		
	and Sons, Inc.		
Appro	val Date		
11			

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY					
SBS M P C 03: CELL BIOLOGY, GI EVOLUTION			ENETICS &			
SchoolName	School of Bioscien	ces				
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	CELL BIOLOGY, GENETICS & EVOLUTION					
Type of Course	Core					
Course Code	SBS M P C 03					
Course Summary & Justification	is course on Cell Biology and Genetics deals with the frontier areas of basic biology e objective of the course content is to create a sound awareness about the current developments taking place in different fields of cell biology and genetics The course content is designed with a view to augment CSIR/UGC syllabus					
Semester	First					
Total StudentLearningTime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of cell bio	ology and	d genetic	S		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	ild a perspective on current developments in the fields of cell biology, genetics and evolution and the cellular level organization of organisms	E	
2	mpare and analyze the processes of cell cycle, cell division, cell differentiation and cell death and analyze the relationship between cell cycle, ageing, cell death and cancer	U/ An	

3	Explain the processes, laws, and theories related to inheritance and evolution	R	
4	Perform genetic mapping based on data supplied	S	
5	aluate the behavior of genotypes and alleles in natural populations	Е	
6	Communicate effectively about a given topic in cellbiology/ genetics/ evolution both verbally and in writing	An/ C	
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea	te (C), Skill (S),	Interest (I)

COURSE CONTENT

Module	E CONTENT Module Content	Credits	Hrs
		010010	
<u>No</u> 1	Cell and its constituents: Cell constituents - Mitochondria, Chloroplast, Endoplasmic Reticulum Golgi complex, Peroxisomes, Lysosome, Ribosome, Nucleus, Nucleolus, Chromosomes, Nucleosomes, Histones, Genome, Genomics, Proteomics. Cell cycle and Cancer: Cell cycle- Different stages, variations, checkpoints, regulations of cell cycle, maturation Promoting factor, cells, cyclins, ubiquitin, protein ligases, Anaphase Promoting complex, inhibitors of CdK, growth factors and D cyclins. Rb protein and E2F transcription factors. Cancer - Stages in cancer development, causes, properties of cancerous cells, tumor Viruses, oncogenes, functions of oncogene products, oncogene and signal Transduction , oncogene and G proteins, oncogene and cell survival, Tumor Suppressor gene, functions of tumor suppressor gene products, Diagnosis ,prevention and treatment of cancer	0.5	10
2	Cell Differentiation-Stages of development, regulation of development, cascade control/ Differentiation in Drosophila, maternal, Segmentation and homeotic Genes, Genetic control of embryonic development, Bi thorax mutant, Antennapediac mutant ,Hemeobox Aging Process of aging, theories of aging, Arking's contribution Oxidative stress, Telomere problem, DNA repair defects. Cell Death Necrosis and Apoptosis, Differences between necrosis and Apoptosis, stages in Apoptosis, mitochondrial damage DNA ladders, transglutaminase activity, programmed cell death in <i>Ceanorhabdtis elegans</i> CED 3, CED 4, CED 9 and their roles in Apoptosis Bax, Bid, Bcl2 protein	0.5	10
3.	Classical Genetics: Genetics, the evolution of the subject through pre mendelian, Mendelian and post Mendelian Peroids. Mendelism – the basis principles of inheritance, gene interactions – allelic and no allelic. Environment and gene expression, penetrance and expressivity. Multiple alleles and polygenic inheritance, Heritability and genetic advance	1.0	20

	Evolution: Origin of the universe and origin of life; concept of Oparin, Miller-Urey Experiments; Evolution of Prokaryotes - origin of eukaryotic cells - Margulis Endosymbiotic theory; Geological Timescale: Tools and techniques in estimating evolutionary time scale; Theories of evolution of life : Pre-Darwinian concepts – Lamarkism, Darwinism – major concepts - variation, adaptation, struggle, fitness and natural selection, Neo-Darwinian theories – theories of speciation – allopatric and sympatric speciation - Rose Mary and Peter Grant (Molecular evolution in Darwinian finches) - Neutral Theory of Molecular Evolution.		
4	Chromasome genetic mapping ,Organelle Genetics and Population Genetics: Linkage and linked genes with special reference to inheritance, Chromosome mapping with three - point test crosses. Organelle Genetics and cytoplasmic inheritance. Population Genetics – types of gene variations, Measuring genetic variations, Hardy Weinberg principle and its deviations. Medical genetics - an introduction	0.5	10
5	Genetic System in Microbe, Yeast and Neurospora: Plasmids & bacterial sex. Types of plasmids. Plasmids copy number and incompatibility, Replication of plasmid. Plasmid a cloning vector. Episomes. Transposable element-IS element and transposon, Integrons and Antibiotic resistance cassettes, Multiple antibiotic resistant bacteria, Mu-virus. Gene mapping in Bacteria. Bacteriophage genetics-Plaque formation & phage mutants, genetic recombination in lytic cycle. Genetic system in Yeast & Neurospora.	0.5	10
	Total Credits of the Course	3	60

TeachingandLearningApproach	Classroom Procedure (Mode of transaction)			
	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co- operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative			
Assessment Types	Mode of Assessment			
	 A. Continuous Internal Assessment (CIA) Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks 			
	B. Semester End examination – 60 marks			

REFERENCES

Compulsory Reading:

1. Jonathan B (2016) Principles of Evolution, Garland Science, Taylor and Francis

2. Strickberger M W (2015) Genetics 3rd Edition, Pearson

3. Genetics a conceptual approach. 6th edition. Benjamin Pierce, Macmillan Learning, New York

4. The Cell-A Molecular approach, Fifth edition, Geoffrey M Cooper and Robert E . Hausman. , ASM Press ,Washington DC

Further Reading:

- 1. Principles of Genetics, Snustad, Simmons and Jenkins, John Wiley And Sons Inc
- 2. Genetics, Robert Weaver and Philip Hendricks, WH.C. Brown Publishers, Iowa
- 3. Introduction to Genetic Analysis, Griffiths, Wessler, Lewontin, Gelbart, Suzuki and Miller, Freeman's and Co, New York
- 4. REA's Problem Solvers in Genetics, Research Education Association,61, Ethel Roadwest, New Jersey
- 5. Cell and Molecular Biology by Gerald Karp,7th Edition,
- 6. Cell and Molecular Biology by De Robertis E.D.P, 8th Edition

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विद्याया अपूनमाइनुते	SBS M P C 04: BIOPHYSICS AND BIOSTATISTICS

SchoolName	School of Biosciences
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics
Course Name	BIOPHYSICS AND BIOSTATISTICS
Type of Course	Core
Course Code	SBS M P C 04

Course Summary & Justification	This course is to introduce interdisciplinary Biophysics area, its scope and its importance The objective of the course is to give an insight into the basic concepts of thermodynamics, importance of basic biophysical phenomena, conformation and conformational changes, interaction of protein with other molecules and basic knowledge about radiation, its interaction with matter and its applications. The course content is to familiarize the basic concepts of biostatistics and its importance in research area of Life sciences The course content is designed with a view to augment CSIR/UGC syllabus					
Semester			First			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of Biophysics	and Bios	statistics	1	1	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	plain the scope and importance of biophysics	Е	
2	scribe the concepts of thermodynamics and applications of basic biophysical phenomena.	U/ An	
3	Narrate the conformation and interaction of proteins and nucleic acids	R	
4	Explain the electromagnetic radiation, its interaction with matter and applications.	S	
5	form the retrieval of biological information by using structural and sequence databases	Е	
6	Explain the basic concept of biostatistics and analyze, interpret statistical softwares and to do statistical design for their research	An/ C	

COURSE CONTENT

Module No	Module Content	Credits	Hrs
1	Biophysical phenomena and Thermodynamics of biomolecular interactions : Scope and definition of Biophysics, Principle and biological importance of Osmosis, Electroosmosis, osmotic pressure, osmotic equilibrium, Donnan equilibrium, Diffusion, Sedimentation, Filtration, Surface tension, Dialysis, Adsorption and Colloids. Laws of thermodynamics, Enthalpy, Entropy, Free energy, Redox reactions, Redox potential and its calculation by Nernst equation, examples of redox reactions in biological system.	0.5	10
2	Structural Biophysics and computational biology : The molecular interactions between proteins and nucleic acids: DNA-protein interaction and RNA- protein interactions, DNA-binding motifs: Helix-turn-Helix motif, Zn fingers, Helix-loop helix motifs and Leucine zippers. Molecular forces: Hydrogen bonding, hydrophobic interactions, Dipole interactions: charge-dipole interactions, induced dipoles, steric repulsion, Vander waals force in biomolecules, Structural and Sequence databases, Alignment algorithms; Retrieval of biological information from widely used resources: NCBI and PDB, Molecular modelling and Structure based drug designing.	0.5	10
3.	Radiation Biophysics : Electromagnetic spectrum, Ionizing and non ionizing radiation. Properties and biological effects of ultraviolet radiation, infrared and microwave radiations. Radioactivity, Interaction of radiation with matter. Units of Radiation. Biological effects of radiation. Applications of ionizing and non-ionising radiations in industry, agriculture and research. Radiation hazards.	1.0	20
4	Introduction to Biostatistics: Scope of Biostatistics, probability and probability distribution analysis. Variables in biology- collection, classification and tabulation of data- graphical and diagrammatic representation- scatter diagrams, histograms- frequency polygon- frequency curve-logarithmic curves. Descriptive statistics- measures of central tendency, Arithmetic mean, median, mode, geometric mean, harmonic mean. Measures of dispersion, standard deviation, standard error, variance, coefficient of variation. Correlation and Regression	0.5	10
5	Test of significance: Basic idea of significance test- hypothesis testing, levels of significance. Testing of single mean, double mean, single proportion, double proportion in large sample. Testing of single mean, double mean and Paired- t in small sample. ANOVA- One way and Two way; Chi-square test of goodness of fit and Chi-square test of independence, comparison of means of two samples, three or more samples. Fundamentals of field experiments- randomization, replication and local control. CRD and RBD. Statistical packages	0.5	10

Total Credits of the Course	3	60
	1	1

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative	
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks B. Semester End examination – 60 marks 	

REFERENCES

Compulsory Reading:

1. Proteins, Structure and molecular properties, Thomas E Creighton

- 2. Fundamentals of Biostatistics: Irfan.A. khan, Atiya Khanum, Ukaaz publications
- 3. Principles of Biostatistics: Marcello Pagano, Kimberlee Gauvreau, Duxbury Press
- 4. Biochemistry: Donald Voet and Judith G Voet, Wiley Publications

Further Reading:

- 5. Biophysics-Hoope W etal
- 6. Biophysics-Volkenstain M.V
- 7. Molecular Biophysics- Volkenstain M.V
- 8. Introduction to thermodynamics of irreversible process-John Wiley
- 9. Statistical methods in Biology- Briley N.J.T
- 10. Introduction to Biophysics-Sokal R.R & Rohl F.J
- 11. Biostatistics: Pardeep.K.Jasra, Gurdeep Raj, Krishna prakashan Media.(P) Ltd

12. Bloomfield, V. (2009) Computer Simulation and Data Analysis in Molecular Biology and Biophysics. Springer

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M P C 05: PHYSIOLOGY

SchoolName	School of Biosciences					
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	PHYSIOLOGY					
Type of Course	Core					
Course Code	SBS M P C 05					
Course Summary & Justification	is course is designed to provide an overview of human physiology. Course topics will include the various systems of the body, functions of each system, and interrelationships to maintain the internal environment. The course also provides inputs to physiological stress and adaptive strategies to overcome stress					
Semester			First			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics Knowledge in	Biology	L	1	1	I

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Idents should be capable of effectively communicating how the human body works	U	
2	idents should be able to explain interrelationships among molecular, cellular, tissue, and organ functions in each system	E	
3	Students should be able to describe the interdependency and interactions of the systems	A	

4	Students should be able to explain contributions of organs and systems to the maintenance of homeostasis	А	
5	idents should be able to identify causes and effects of homeostatic imbalances	Е	
6	Able to gain the approaches used to study various functional systems of the human body and physiologic adaptation	Ι	
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea ppreciation (Ap)	te (C), Skill (S),	Interest (I)

COURSE CONTENT

Module No	Module Content	Credits	Hrs
1	The system as a basic unit in physiology: different systems in physiological process, interaction of different systems in normal and stress conditions, homeostasis, Neuro-Musculo-Skeletal systems: brain and peripheral nervous systems, neurotransmitters, synapse, neuro-muscular junction, musculoskeletal systems	0.5	10
2	Cardio-Pulmonary & Renal Physiology: Anatomy and general function of heart, blood and hemodynamic, blood pressure, heart rate, cardiac cycle, cardiac output, electrocardiography, echocardiography; anatomy of the respiratory system, principles of respiratory mechanisms, respiratory rate, lung volumes, oxygen uptake, lung function tests, gas transport; anatomy of the excretory system, nephron, glomerular filtration rate, urine formation, renal clearance test, renal regulation of electrolytes, dialysis	1	20
3.	Principles of endocrinology: Role of hormones for maintenance of the internal environment, hormone transport in blood, mechanism of hormone action, hormone metabolism and excretion, types of endocrine disorders, hypothalamus and pituitary, thyroid, adrenal glands, endocrine control of growth, sex hormones, pancreatic hormones, neurohormones	0.5	10
4	Gastrointestinal Physiology & Nutrition: Gastrointestinal structure, food digestion, and absorption, gastrointestinal hormones, central control of gastrointestinal functions, pathological situations of gastrointestinal functions. role of liver and bile in gastrointestinal functions.	0.5	10
5	Stress physiology: Stress-responses, the role of the hypothalamic- hypophyseal-adrenal axis, oxidative stress and mechanism, effect of stress-inducing and anti-stress agents, cardio-respiratory responses during high altitude acclimatization, stress-induced diseases, and remedy, Human tolerances to stresses in space including space flight: Physiological adaptation to space flight, physiology in deep-sea diving and other high-pressure operations	0.5	10

Total Credits of the Course	3	60

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search – 10 marks B. Semester End examination – 60 marks

REFERENCES

Compulsory Reading

1. Vander's Human Physiology- The mechanism of body function. Widmaier, Raff & Strang

2. Textbook of Medical Physiology. Arthur.C. Guyton& John.E. Hall

3. Physiological basis of Medical Practice. John.B. West

4. Endocrinology- Mac E Hadley

Further Reading:

Review of Medical Physiology- Ganong, William F

Biochemistry and Physiology of the cell. An introductory text second edition- Edwards, N. A Hassall, K.A

Notebook of medical physiology: endocrinology, with aspects of maternal, fetal and neonatal physiology- Hawker, Ross Wilson

Human Physiology: an integrated approach- Silverthorn, Dee Unglaub

rinciples of anatomy and physiology- Tortora, Gerald J Derrickson, Bryan

6.Textbook of Endocrine Physiology- Griffin, James E; Ed. Ojeda, Sergio R;Ed

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M P C 06: LABORATORY COURSE-1

SchoolName	School of Biosciences						
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics						
Course Name	LABORATORY COURSE- 1						
Type of Course	Core						
Course Code	SBS M P C 06						
Course Summary & Justification Semester	The course is designed to develop in students the essential skills to perform the basic biochemical assays, qualitative analysis of biomolecules and techniques for the separation of biomolecules. This will enhance the practical abilities of the students to carry out the analysis of biomolecules. First						
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Eg. Authentic learning Collaborative learning Independent learning	10	20	120	30	180	
Pre-requisite	General idea on reage	nts and so	olvents				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To prepare reagents, buffers and other solutions in required concentrations and required pH.	Ар	
2	To extract and estimate different bio-molecules (sugar, cholesterol, and proteins) in biological samples	Ap/S	
3	To identify the different components in a mixture of carbohydrates	S	
4	To detect the presence of albumin, casein and gelatin in biological samples	S	
5	To perform separation by Paper and Thin layer chromatography	S	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

COURSE CONTENT

Module No	Module Content	Credits	Hours
1	Preparation of solutions: Percentage solutions, Molar solutions, Normal solutions, Dilution of Stock solutions, Preparation of buffers using the Henderson Hasselbach equation	0.25	15
2	Spectrophotometric experiments: Verification of Beer Lambert's law, Determination of UV-Visible spectrum of compounds, Determination of Concentration of molecules from Molar Extinction Coefficient values Extraction of Polysaccharides (Starch/Glycogen), Proteins, and Lipids from appropriate sources and their estimations. Estimations: Estimation of reducing sugars by Dinitrosalicylic acid method, Estimation of proteins (Biuret and Lowry's methods), Estimation of Methionine by Nitroprusside method, Estimation of Cholesterol by Zak's method.	0.75	45
3.	Qualitative analysis of Carbohydrate mixtures (a combination of polysaccharide, disaccharide and monosaccharide) following systematic scheme for analysis. (Starch, dextrin, glycogen, glucose, fructose, xylose, galactose, sucrose, maltose, lactose) Qualitative analysis of proteins- Albumin, casein, gelatin	0.75	45
4	Chromatographic techniques: Separation of amino acids by Paper chromatography (Descending or Ascending), Separation of Plant pigments by Thin layer chromatography	0.25	15
	Total Credits of the Course	2	120
	Books for Reference	I	
 Introd Publi Stand 	Sory Reading: ductory Practical biochemistry, S. K. Sawhney & Randhir Singh (shing House, New Delhi, ISBN 81-7319-302-9, p 195 – 303 lard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), K iana ISBN 81-7663-067-5, p 12 - 182.		
Further 3. Hawl	Reading: c's Physiological Chemistry, Bernard L. Oser (ed) TATA McGRA bany LTD, New Delhi, p 60 – 127, 1317- 1334	W Hill Pu	blishing
4. Expendence 4. Expense 1. Deshift 49 - 7	rimental Biochemistry: A Student Companion, Beedu Sasidh pande (ed), I.K International Pvt. LTD, New Delhi ISBN 81-88237 72	7-41-8, p 1	3- 17, p
J. PTACE	ical Biochemistry, R.C. Gupta & S. Bhargava (eds) CBS Publisher Delhi, ISBN 81-239-0124-0 p 9 – 27	s and Disti	ioutors,

TeachingandLearningApproach	Laboratory Procedure (Mode of transaction)			
	Direct Instruction: lecture, Explicit Teaching, Demonstration, Hands on experimental sections, Skill acquisition by laboratory training			
Assessment Types	Mode of Assessment			
	C. Continuous Internal Assessment (CIA) 1. Internal Laboratory Skill Tests of maximum 20 marks 2. Seminar Presentation – Laboratory material and methods Maximum marks 10 3. Write a detailed report on instrumentation – 10 marks D. Semester End Practical examination – 60 marks			

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विद्याया अमृतमाइन्हे	SBS M P C 07: LABORATORY COURSE-2

SchoolName	School of Biosciences
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics
Course Name	LABORATORY COURSE-2
Type of Course	Core

Course Code	SBS M P C 07					
Course Summary & Justification	e purpose of this laboratory course is to provide the student with the opportunity to observe many physiological principles. The course is designed to understand the mechanisms related to cardiovascular and respiratory functions.					
Semester			First			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	5	5	120		130
Pre-requisite	Basics Knowledge in	Biology		1		<u> </u>

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	ply appropriate safety standards in laboratory	А	
2	quire laboratory skills in haematology, cardiovascular and respiratory physiology	S	
3	Appropriately utilize laboratory equipment, such as microscopes, dissection tools, general labware, physiology data acquisition systems	S	
4	mmunicate results of scientific investigations, analyse data, and formulate conclusions	С	
5	Idents should be able to identify cell structure	U	
6	Work collaboratively to perform experiments	Ι	
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea opreciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hrs
1	Haematology	1	60
	i) Determination of haemoglobin concentration		
	ii) Enumeration of formed elements- red blood cells & white		
	blood cells		

	iii) Study of blood smear for the differential count and cell		
	morphology		
	iv) Erythrocyte sedimentation rate		
	v) Determination of the bleeding time		
	vi) Determination of clotting time		
2	Respiratory physiology- Pulmonary function testing	0.5	30
	i) Demonstration on the recording of tidal volume		
	ii) Demonstration on the recording of vital capacities		
	iii) Demonstration on the recording of inspiratory & expiratory		
	flow rates		
3.	Cardiovascular physiology- Electrocardiography	0.5	30
	i) Demonstration on ECG recording- human or animal model		
	ii) Identification of ECG waves		
	iii) Calculation of heart rate from ECG		
	Total Credits of the Course	2	120

Teachingand	Laboratory Procedure (Mode of transaction)
LearningApp	Direct Instruction: lecture, Explicit Teaching, Demonstration, Hands on
roach	experimental sections, Skill acquisition by laboratory training
Assessment Types	Mode of Assessment F. Continuous Internal Assessment (CIA) 1. Internal Laboratory Skill Tests of maximum 20 marks 2. Seminar Presentation – Laboratory material and methods Maximum marks 10 3. Write a detailed report on instrumentation – 10 marks G. Semester End Practical examination – 60 marks

- Medical Laboratory Technology-A Procedure Manual for Routine Diagnostic Tests- Kanai L Mukherjee
- 2. Pocket Guide to Spirometry- David P Johns and Rob Pierce

- 3. Spirometry in Practice- A practical guide to using spirometry in primary care- Dr. David Bellamy, British Thoracic Society COPD consortium.
- 4. ECGs made easy- Barbara J Aehlert

Further Reading:

CG Assessment and Interpretation- Cascio, Toni ntroduction to medical laboratory technology- Baker, F J Silverton, R E ractical haematology- Dacie, John V Lewis, S.M

Approval Date	
Version	
Approval by	
Implementation Date	

SECOND SEMESTER

SBS M P C 08: IMMUNOLOGY

School Name	School of Biosciences						
Programme	M.Sc. Microbiology/Biotechnology/Biochemistry/Biophysics						
Course Name	IMMUNOLOGY						
Type of Course	Core	Core					
Course Code	SBS M P C 08						
Course Summary & Justification	s course on Immunology deals with various mechanisms and processes involved in the defense responses. This course is an important branch of life science. Human body has different lines of defense to fight against pathogens. The content in this course has been designed with an objective to provide detailed understanding on the process and mechanisms involved in the defense responses. Understanding on the functioning of immune system is highly essential for a student to explore its theoretical and practical aspects for the benefit of society.						
Semester			Second				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningH ours	
	Authentic learning6020040120Collaborative learning Independent learning6020040120						
Pre-requisite		Basic understanding on defense responses Knowledge in any branch of Life science					

COURSEOUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1.	Students will able to understand and explain basic principles of immunology	R/U	
2.	Students will able to learn the recent advances in immunology	R/U	
3.	Students will able to analyse the clinical importance of immunological reactions	U/ An	
4.	Students will become able to identify the correlation between immunological abnormalities and health status of humans	U/An	
5.	Students will get theoretical and technical know-how for the laboratory diagnosis of infectious diseases	C/S	
6.	Students can apply the knowledge and skills for clinical and diagnostic applications	A/S	
	ember (R), Understand (U), Apply (A), Analyse (An), Evalua terest (I) and Appreciation (Ap)	te (E), Create	(C), Skill

Modu	Module Content	Credi	Hrs
le No		ts	
1	Infection, Source and methods of transmission, Immunity- Types	0.5	10
	of immunity. Mechanisms of innate immunity, PAMPs, pattern		
	recognition receptors, types, scavenger receptors and toll - like		
	receptors, Phagocytes and Phagocytosis, Organs and cells with		
	immune functions. Lymphocytes and lymphocyte maturation.		
	PAMPs and PRRs in plants		
2	Antigens, Epitopes and paratopes, B-cell and T-cell epitope,	1.0	20
	Antigenicity and Immunogenicity, Antibodies, Immunoglobulin -		
	structure, classes and functions. Genetic basis of antibody		
	diversity, Organization and Expression of Immunoglobulin Genes,		
	V(D)J rearrangements; recombination signal sequences and their		
	role, somatic hypermutation and affinity maturation Antigen-		

	antibody reactions, Agglutination, Precipitation,		
	Immunoflourescence, Complement fixation, Radioimmuno assay,		
	ELISA, Western blotting		
3.	Immune response- Humoral and cell mediated, Receptors on T and	0.5	10
	B cells for antigens, MHC, TCR- mediated signalling, Signal		
	transduction pathways associated with T-cell activation, Signal		
	transduction by activated B- cell receptor, Antibody production,		
	Primary and secondary immune response, Factors influencing		
	antibody production, Clonal selection theory, Monoclonal		
	antibodies - production and application, Antibody engineering.		
	Complement system, Complement activation, Biological effects of		
	complements, Antigen processing and presentation, Activation of		
	T-cells, T cell function, Cytokines. Human microbiome and		
	immunity		
4	Immunology of organ and tissue transplantation, Allograft reaction	0.5	10
	and GVH reaction, Factors influencing allograft survival,		
	Immunology of malignancy, Tumor antigens, Immune response in		
	malignancy, Immunotherapy of cancer, Immunohematology, ABO		
	and Rh blood group system, Immunology of blood transfusion,		
	Hemolytic disease of new born		
5	Immunological Tolerance, Autoimmunity, Mechanisms of	0.5	10
	autoimmunization, Autoimmune diseases. Inflammation,		
	Hypersensitivity – immediate and delayed reactions, Clinical types		
	of hypersensitivity, Immunodeficiency diseases,		
	Immunoprophylaxis, Vaccines -types of vaccines, DNA vaccine,		
	recent trends in vaccine development.		
	Total Credits	3	60

Teaching And	Classroom Procedure (Mode of transaction)				
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,				
Approach	interactive Instruction, Active co-operative learning, Seminar, Group				
	Assignments Authentic learning, Library work and Group discussion,				
	Presentation by individual student/ Group representative				

Assessment Types	Mode of Assessment				
	A. Continuous Internal Assessment (CIA)				
	1. Internal Tests of maximum 20 marks				
	2. Seminar Presentation – a theme is to be discussed				
	and identified to prepare a paper and present in				
	the seminar - Maximum marks 10				
	3. Write a detailed report on a given topic based on				
	research findings and literature search -10				
	marks				
	B. Semester End examination – 60 marks				

Compulsory Reading:

1. Immunology - Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, and Janis Kuby, W H Freeman and Co., 2013

2. Immunobiology - Charles A. Janeway Jr., Paul Travers, Mark Walport and Mark J. Shlomchik, Garland Publishing., 2016

Further Reading:

3. Essential Immunology - Ivan M. Roitt and Peter J delves, Blackwell Publishing, 2016

4. Essential Clinical Immunology – Helen Chappel and Mansel Haeney, ELBS/Blackwell Scientific Publications, 2014

5. Introduction to Immunology – John W, Kimball Maxwell, Mac Millan International Edition, 1990

6.Text book of Microbiology – R. Ananthanarayanan and C K Jayaram Panicker. Orient Longman,2013

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P C 09: MOLECULAR BIOLOGY AND GENETIC ENGINEERING

School Name	School of Biosciences					
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	Molecular Biology ar	Molecular Biology and Genetic Engineering				
Type of Course	Core					
Course Code	SBS M P C 09					
Course Summary & Justification	 Molecular Biology and Genetic Engineering is one of the most dynamic and attractive courses in all branches of applied life sciences The syllabus content in this paper is designed with an objective to train the students in both theoretical and practical aspects of the subject This will also enable the students to get an idea about the latest developments taking place in this subject 					
Semester			second			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of cell and mole genetic engineering	ecular bio	ology, Bas	ics of tools	and tech	nniques of

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	completing this course the students will be able to plain the processes of replication, transcription and translation and analyse the importance of these processes in health and disease	E	
2	plain the concepts of gene regulation in prokaryotes and RNA world	R/E	
3	alyse the use of different tools and techniques of gene cloning in E coli and explain the applications of DNA technology	U	
4	ility to develop a protocol for cloning a gene from a selected organism	Α	
5	ility to explain verbally and orally the concepts of molecular	Е	

	biology and genetic engineering		
6	Ability to write a research proposal based on the concepts discussed in the course	An/ C	
*Remember (R) Understand (U) Annly (A) Analyse (An) Evaluate (E) Create (C) Skill (S) Interest (I)			

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module No	Module Content	Credits	Hrs
1	Replication – Process of DNA replication, Semiconservative, discontinuous uni and bidirectional, Okazaki fragments, DNA polymerases in eukaryotes and prokaryotes, Klenov fragment, modes of replication, theta, rolling circle, d-loop replication, Primasome, SSB, Helicase, Ligase, methylation and control, repetitive DNA sequences, minisatellite, microsatellite, DNA protein interation DNA Linking number and topoisomerase, Inhibition of replication.	0.5	10
2	 Transcription. Process of transcription, stages in transcription, RNA polymerases in prokaryotes and enkaryotes, sigmafactor in prokaryotes, Rho dependant and Rho independent termination. Enhancers, Transcription factors in Eukaryotes, Differences in transcription between prokaryotes and Eukaryotes, post transcriptional modifications-Polyadenylation, capping, r-RNA processing, Splicing-Spliceosome, lariat structure, Group 1, II and III Introns Rihozyme, Importance of ribozyme, properties, application, RNase P, RNAse III, RNAse H. monocistonic and polysistronic m-RNA, Joint transcript of r-RNA and t-RNA in prokaryotes and their processing, Transplicing, alternate splicing, inhibitors of Transcription. Molecular mechanism of gene regulation in prokaryotes-Transcriptional regulation; Operon concept, structure of operon, Lac, Trp, Arc operon, Catabolic repression, Atteunation. Role of Hormones in gene regulation. RNA World, RNA based technology- Molecular mechanism of Ribozyme, Antisense RNA, SiRNA, MicroRNA, Ribozwitches & their applications; Telomerase structure and function, Nucleic acid as therapeutic agent 	0.75	15
3.	Translation: Process of translation. Stages in translation, genetic code, properties, wobble hypothesis, eukaryotes and prokaryotes ribosomes, m-RNAs, t-RNAs, aminoacyl t-RNA synthatases, protein factors initiation complex, peptidyl transferase, releasing factors, differences between prokaryotic and eukaryotic systems, inhibition of translation. Post translation modification by cleavage, self assembly assisted self assembly chaperones, acylation, phosphorylation, acetylation and glycosylation, Histone acetylation and deacetylases, chromosome remodeling complex. Intein splicing. Protein targeting, cotranslational import, post translational import, SRP- structure and function, Blobel's concept, Lysosome targeting, M6P address Glycosylation core	0.5	10

	glycosylation terminal glycosylation, Dolichol phosphate.		
4	Tools and techniques for genetic Engineering: History of rDNA Technology ,Cohen And Boyer Patents, Isolation of DNA and RNA from different sources, enzymes used in genetic engineering with special reference to restriction enzymes, ligases, and other DNA modifying enzymes. End modification of restriction fragments, vaccinia topoisomerases mediated ligation of DNA, TA cloning, and homopolymer tailing Vectors for E coli with special reference to plasmid vectors (pSC101, pBR322,pUC,their development, features and selection procedures),direct selection plasmid vectors, low copy number plasmid vectors, runaway plasmid vectors, Bacteriophages (λ and M13) with special reference to Charon phages, λ EMBL, λ WES λ B', λ ZAP- their development, features, selection procedures, <i>in</i> <i>vitro</i> packaging mechanisms for phage vectors, cosmids, features, advantages and cosmid cloning schemes, phagemids with special reference to pEMBL, pBluescript, pGEM3Z , pSP64, pcDNA, pLITMUS Construction of genomic libraries and cDNA libraries, procedures for recombinant selection and library screening, PCR enzymes, types of PCR, primer design, real time PCR, RTPCR, Nested PCR, Inverse PCR, Assymmetric PCR, applications of PCR Cloning, Chemical synthesis of DNA, DNA sequencing:- plus and minus sequencing, Sangers dideoxy sequencing, Maxam and Gilberts method. Advanced sequencing procedures: – pyrosequencing, Illumina, ABI / SOLiD and their applications	1	20
5	Appications of Genetic Engineering: Applications of transgenic Technology Improving quality, quantity and storage life of fruits and vegetables. Plants with novel features, Engineering metabolic pathways, Pharming. Animal cloning, Ethics of cloning. Applications of Molecular Biology in forensic sciences, medical science, archeology and paleontology	0.25	5
	Total Credits of the Course	3	60

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	 Mode of Assessment H. Continuous Internal Assessment (CIA) Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10

		marks	
		I. Semester End examination – 60 marks	
RE	FEREN	ICES	
Comp	oulsory	Reading:	
	1.	Principles of gene manipulation – Old and Primrose, Blackwell Scientific	
		publishers, Edn.5 th	
	2.	Cell and Molecular Biology by Cooper	
Furth	er Read	ling:	
1.	Princi	ples of gene manipulation – Old and Primrose, Blackwell Scientific publishers,	

- Edn.5th
 Principles of gene manipulation Old, Primrose, and Twyman, Blackwell Scientific publishers, Edn. 6th
- 3. Principles of gene manipulation Old, Primrose, and Twyman Blackwell Scientific publishers, Edn 7th
- 4. Molecular biotechnology, Principles and Applications of Recombinant DNA, Glick Pasternak and Patten, 4th edition ISBN 978-1-55581-498-4 Wiley International Publishers
- 5. From gene to genomes Concepts and applications of DNA technology Jeromy W Dale and Malcom von Shantz , John Wiley and sons
- 6. Principles of plant biotechnology: An introduction to genetic engineering in plants SH Mantell
- 7. Cell and Molecular Biology by Gerald Karp, Academic Press
- 8. Cell Biology by DeRobertis
- 7. Genes-Benjamin Lewin

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY	
विद्यया अधुतमजन्म	SBS M P C 10: METABOLISM AND BIOENERGETICS	

SchoolName	School of Biosciences
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics
Course Name	METABOLISM AND BIOENERGETICS
Type of Course	Core
Course Code	SBS M P C 10

Course Summary & Justification Semester	The course is designed to get a deep knowledge of metabolic processes taking place in the biological systems and their regulation, which is needed to understand the more specialised areas of Biochemistry.					
Total Student Learning Time (SLT)	Learning Approach	Learning Approach Lecture Tutorial Practical Others Total Learning Hours				
	Eg. Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding of chemical groups and bonding; basics of cell biology and physiology					

COURSE OUTCOMES (CO)

the fates U/A thways. metabolic A s in ATP	
s in ATP	
athological	
metabolic A/An	
importance A nd health	
ns and U	
i	ins and U luate (E), Create (C), Skill (A

Module No	Module Content	Credits	Hours
1	Metabolic Pathways: Detailed study on the catabolic pathways & anabolic Pathways -Carbohydrate, Protein, Amino acid and Nucleic acid metabolic pathways.		20

2	Bioenergetics: Functional significance of the mitochondrial	0.75	15
2	respiratory chain and oxidative phosphorylation, Electron	0.75	15
	transport chain: structural components of the chain, complexes,		
	free elements; Structure and functional properties of		
	cytochromes, ferro-sulphurated proteins and CoQ; Generation		
	of the electrochemical proton gradient: Chemiosmosis ATP		
	synthesis- Proton flow through ATP synthase, Rotational catalysis. Inhibitors and uncouplers		
3.	Regulation of metabolism: Hormonal and Allosteric regulation	0.5	10
5.	of pathways in carbohydrate, lipid, nucleotide, amino acid and	0.5	10
	protein metabolism; Coordinated regulation of opposing		
	metabolic pathways; Regulation of mitochondrial electron		
	transport and oxidative phosphorylation.		
4	Signal Transduction: intracellular receptor and cell surface	0.5	10
	receptors signaling: Cyclic AMP-dependent protein kinase;		
	Cyclic GMP-dependent protein kinase; Protein kinase C; Ca ²⁺ -		
	calmodulin-dependent protein kinases ; AMP-dependent protein		
	kinase ; Receptor tyrosine kinases; Protein kinase B; Cytokine		
	activation of the JAK'/STAT pathway; Cell cycle control;		
	Receptor serine/threonine kinases; Other protein kinases ; Phosphoprotein phosphatases; Cancer Pathways: MAPK, P13K,		
	TP53 network, NFkB pathways; Signalling by TGF β factor,		
	STAT factor		
5	Metabolomics: Introduction to origins of metabolomics; define	0.25	5
C	terms: Metabolite, Metabolome, Metabonomics; Analytical	0.20	C
	techniques in study of Metabolomics (Principle & Methodolgy):		
	Separation methods: Gas Chromatography, HPLC, Capillary		
	Electrophoresis; Detection Methods: Mass spectroscopy, NMR.		
	Applications of Metabolomics in toxicity assessment/		
	toxicology, diagnostics and health Screening		
	Total Credits of the Course	3	60
	Books for Reference		
-	ulsory Reading:		G
	nciples Of Biochemistry, 4/e (2006) by Robert Horton H, Laurence		
	rimgeour K Publisher: Pearsarson ISBN: 0131977369, ISBN-1 3 8-0131977365):9/80131	.977303,
	ochemistry 6th Edition (2007) by Jeremy M.berg John L.tymocz	yko Luber	t Strver
	blisher: B.i.publicationsPvt.Ltd ISBN:071676766X ISBN-13: 9780		•
	5767664		- , , , , , ,
3.	Lehninger Principles of Biochemistry, Fourth Edition by David L. N	Jelson Mic	chael M.
	Cox Publisher: W. H. Freeman; Fourth Edition edition (April 23,	, 2004) IS	SBN-10:
	0716743396 ISBN-13: 978-0716743392		
Furthe	er Reading:		
٠	E.S. West, W.R. Todd, H.S. Mason and J.T. van Bruggen, AText Boo	k of Bioch	emistry,
	Oxford and IBH Publishing Co., New Delhi, 1974		• /
•	Biochemistry [with Cdrom] (2004) by Donald Voet, Judith G. Voe	t Publish	e r: John
	Wiley & Sons Inc ISBN• 047119350X ISBN-13• 9780471193500		

Wiley & Sons Inc ISBN: 047119350X ISBN-13: 9780471193500, 978-0471193500

• Principles Of Biochemistry (1995) by Geoffrey L Zubay, William W Parson, Dennis

E Vance **Publisher:** Mcgraw-hill Book Company – Koga **ISBN:**0697142752 **ISBN-13:** 9780697142757, 978-0697142757

 Biochemistry (2008) by Rastogi Publisher: Mcgraw Hill ISBN:0070527954 ISBN-13: 9780070527959, 978-0070527959

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment Types	Mode of Assessment J. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks				
	K. Semester End examination – 60 marks				

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P C 11: BIOPHYSICAL TECHNIQUES AND BIOINSTRUMENTATION

SchoolName	School of Biosciences					
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	BIOPHYSICAL TECHNIQUES AND BIOINSTRUMENTATION					
Type of Course	Core					
Course Code	SBS M P C 11					
Course Summary & Justification	sciences This course gives k scientific instrumer	This course gives knowledge of the principle of operation and design of scientific instruments It attempts to render a broad and modern account of scientific				
Semester			Secon	d		
Total StudentLearning Time (SLT)	Learning Lecture Tutorial Practical Others Total LearningHours					
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of Biophys	sics and B	iostatistic	S		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To explain the methods used for gaining information about biological systems on an atomic or molecular level.	E	
2	To describe different spectroscopic techniques	U/ An	
3	To perform various biophysical fractionation and separation of biomolecules	R	
4	To describe how to perform electrophoretic techniques	S	

6	hydrodynamic techniques To perform different microscopic techniques	An/ C				
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module No	Module Content	Credits	Hrs
1	Spectroscopic techniques : Basic principles, nature of electromagnetic radiation, Interaction of light with matter, Absorption and emission of radiation; Atomic & Molecular Energy levels, Electronic, vibrational and Rotational spectroscopy of molecules, transition and selection rules; Atomic & Molecular spectra. Principle, Instrument Design, Methods & Applications of UV-Visible spectroscopy, Infrared spectroscopy, Raman Spectroscopy, Fluorescence spectroscopy, Nuclear magnetic Resonance Spectroscopy.	0.5	10
2	Physicochemical Fractionation techniques : Principle, Instrument Design, methods and Applications of all types of Adsorption and Partition Chromatography- Paper chromatography, Thin layer chromatography, High Performance Thin layer Chromatography, Gel filtration chromatography, Affinity chromatography, Ion-exchange chromatography, High Pressure Liquid Chromatography. Reversed phase chromatography, Hydrophobic interaction chromatography, Chiral chromatography, Counter current chromatography, Fast protein liquid chromatography, Two dimensional chromatography.	0.5	10
3.	Electro analytical techniques and Hydrodynamic Techniques: Principle, Electrophoretic mobility (EPM) estimation, factors affecting EPM, Instrument design & set-up, Methodology & Applications of Free and zone Electrophoresis – Paper electrophoresis, Gel electrophoresis, Poly Acrylamide gel electrophoresis, SDS PAGE, Capillary electrophoresis, Isoelectric focusing, Potentiometry, pH meter, Conductometry. Centrifugation & Ultracentrifugation-Basic principles, Forces involved, RCF Centrifugation, techniques- principles, types and applications. Viscometry- General features of fluid flow and nature of viscous drag for streamlined motion	1.0	20

4	Optical & Diffraction Techniques . Principle, Instrument Design, Methods & Applications of Polarimetry, Refractometry, Circular Dichroism and optical rotatory dispersion: Plain, circular and elliptical polarization of light, Relation between CD and ORD, application of ORD in conformation and interactions of biomolecules. Flow cytometry	10
5	Microscopic techniques: Principle and working of Compound microscope, Phase contrast microscope, Interference microscope, Fluorescence microscope, Polarizing microscope, Scanning and Transmission Electron Microscopy, CCD camera, Introduction to Atomic force microscopy, Confocal microscopy. Total Credits of the Course	10 60

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks B. Semester End examination – 60 marks 				

Compulsory Reading:

 Principles and techniques of practical biochemistry: Keith Wilson and John walker, Cambridge
 Modern Experimental Biochemistry. Rodney F Boyer. Nenjamin/ Cummings publishing company Inc. Redwood city, California

Further Reading:

- 1. Practical Biochemistry- Principles and techniques. Keith Wilson and John walker (Eds), University press, Cambridge UK.
- 2. Principles and Techniques of electron microscopy- Biological applications. M.A Hayat., Mac Millan Press, London UK.
- 3. Biophysical Chemistry: UpadhyayUpadhyay and Nath, Himalaya Publishing House
- 4. Chromatographic methods. A Braithwate and F J Smith. Chapman and hall, NewYork.
- 5. Gel Electrophoresis of Nucleic acids- A Practical approach. Rickwood D and BD Hames. IRL Press, New York. 53
- 6. Spectrophotometry and Spectrofluorimetry: A Practical Approach. Harris DA and CL Bashford (Ed.) IRL Press, Oxford.
- 7. Introduction to Spectroscopy. Donald L. Pavia Gary M Lipman, George S Kriz. Harcourt brace College Publishers, Orlands, Florida
- 8. Gradwohls Clinical Laboratory Techniques. Stanley s. Raphael. W.E. Company, London, UK
- 9. Fundamentals of molecular Spectroscopy: C N Banwell, Tata Mc Graw hill publishing Company Ltd.
- 10. Spectroscopic methods and analyses: Christopher Jones, Barbara Mulloy Adrian H.Thomas.
- 11. Methods in Modern Biophysics: Bengt Nolting, Springer.
- 12. Bio separations Science and Engineering: Roger G Harrison, Paul Todd, Scott .R. Rudge, Oxford University Press.

Approval Date	
Version	
Approval by	
Implementation Date	

	SBS M PC 12 LA	BORAT	ORY COU	JRSE-3		
SchoolName	School of Biosciences					
Programme	MSc.Microbiology/Biochemistry/Biophysics/Biotechnology					
Course Name	LABORATORY COURSE-3					
Type of Course	Core					
Course Code	SBS M P C 12					
Course Summary & Justification	The course includes training on sterilization and disinfection techniques, morphological, cultural and biochemical study of microbes and antibiotic sensitivity tests. The content of the course also include serological techniques. The technical knowhow of basic microbiological and serological methods is essential for post graduate programmes in all branches of Biosciences. Also, the course is intended to provide experience to students in handling protein and DNA, its isolation, quantification and separation using electrophoresis. Also, the course focusses on the technique of PCR technology and proposes a training in PCR technique to equip the students for the					
Semester			Second			
Total StudentLearning Time (SLT)	Learning Approach Lecture Tutorial Practical Others Total Learning Hours					
	Authentic learning Collaborative learning Independent learning	5	5	240		250
Pre-requisites	Theoretical knowledge inMicrobiology, Immunology and Nucleic Acid and Protein Chemistry Basic laboratory skills					

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.
No.			

		Domains
1	Students will acquire skills on practice of sterile and safety precautions in a Microbiology laboratoryand will be able to prepare and sterilize media and to culture bacteria and fungi in laboratory	S/A
2	Students will be able to examine morphological, physiological and biochemical properties of bacteria and perform and interpret antibiotic sensitivity tests	S/E
3	Students will be able to test and analyse the efficacy of disinfectants and perform and interpret the various serological tests in a diagnostic laboratory	S/An/E
4	On completing the course, the students will be able to isolate nucleic acids and proteins from tissues/microorganisms and evaluate quantity and quality of nucleic acids	A/S/E
5	The students will be able to conduct PAGE and will be able to separate proteins using PAGE	S/E
6	The students will be able to amplify a DNA fragmentselectively using the PCRtechnique	S
	ber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea reciation (Ap)	tte (C), Skill (S), Interest (I)

Module No	Module Content	Credits	Hrs
1	Microscopic examination of bacteria in living conditions Testing of motility Staining procedures	0.5	30
2	Sterilisation methods Cultivation of bacteria and fungi Study of cultural characteristics and biochemical reactions of bacteria Testing of disinfectants Antibiotic sensitivity tests	0.75	45
3.	Serological tests for the diagnosis of microbial infecdtions Agglutination and precipitation tests Immunodiffusion in gel ELISA	0.75	45
4	PAGE- Protein separation Native PAGE-Reagent preparation, Apparatus handling, gel casting, electrophoresis, and staining	0.5	30
5	DNA isolation Estimation of DNA RNA isolation Estimation of RNA Separation of DNA and RNA by Agarose gel electrophoresis Selective PCR amplification of a desired fragment	1.5	90
	Total Credits of the Course	4	240

Teachingand	Laboratory Procedure (Mode of transaction)
LearningApp	Direct Instruction: lecture, Explicit Teaching, Demonstration, Hands on
roach	experimental sections, Skill acquisition by laboratory training
Assessment Types	Mode of AssessmentA.Continuous Internal Assessment (CIA)1. Internal Laboratory Skill Tests of maximum 20 marks2. Seminar Presentation – Laboratory material and methods Maximummarks 103. Write a detailed report on instrumentation – 10 marksB.Semester End Practical examination – 60 marks

Compulsory Reading:

1. Medical Laboratory Manual for Tropical Countries Vol.2 Monica Cheesbrough ELBS, 2009

2. Mackie & McCartney Practical Medical Microbiology Churchil Livingstone, 1996

- 3. Molecular cloning by Sambrook, Fritsch and Maniatis, Cold Spring harbour laboratories
- 4. Biochemical Methods Sadasivam and Manickam
- 5. Gel electrophoresis of proteins: A practical approach(second edition)B D HAmes and Rickwood D(eds) Oxford University press

Further Reading:

- 1. Clinical Laboratory Methods Vol.2 Gradwohl The C.V.Mosby Company, 1981
- 2. London Practical Microbiology Dubey R.C.and Mahaswari D.K. S.Chand & Company Ltd. New Delhi, 2002
- 3. Experiments in Microbiology, Plant pathology and Biotechnology, K.R.Aneja, New Age International (P) Limited, New Delhi, 2003
- 4. Practical skills in Biomolecular Sciences, Weyers Jonathan, Reed Rob, Jones Allen, Holmes A D, Pearson publications

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विद्यपा अमृतमप्रनुवे	SBS M PE 13: MICROBIAL TECHNOLOGY
School Name	School of Biosciences

Programme	MSc Biotechnology						
Course Name	Microbial Technology						
Type of Course	Elective	Elective					
Course Code	SBS M PE 13	SBS M PE 13					
Course Offered by	Dr Keerthi T R	Dr Keerthi T R					
Course Summary & Justification	 The course describes the application of microbes in various sectors The course content explains the role of microbes and its utilization/application in various sectors especially in industrial & pharmaceutical area. The course content also illustrates the various methods & process for production of bioactive compounds & products using microbes. 						
Semester		Second					
Total StudentLearningTi me (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120	
Pre-requisites	Basics of Microbiolog	у	1		1	1	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	On completing this course, the student will be able to Explain the methods for studying microbial genome and describe how metabolic & protein engineering help to enhance the production of microbial metabolites	U/A	
2.	Describe the methods, process & production of various microbial based food and dairy products also students have able to explain microbes are food for animal and human	U/An	
3.	Students should explain the role of microbes as biofertilizer, biopesticide, fungicide, and herbicide and	U/A	

	also able to describe the various plant microbe		
	interactions		
4.	Students have able to explain the methods and	An/A	
	mechanism of microbes apply to protect various		
	environmental sector.		
5.	Illustrate the utilization of microbes in the production of	S/C	
	industrial and pharmaceutical products		
6.	Communicate effectively about a chosen topic in		
	microbial technology both verbally and orally		
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea opreciation (Ap)	te (C), Skill (S), Intere	st (I)

Module No			Hrs
1	Microbial Genomics: Introduction to Microbial genomics, Structural Genomics, Functional genomics, Comparative Genomics, Meta Genomics - Genome analysis of extremophiles, Metabolic engineering and protein engineering for artimization of microbial and ducts	0.5	10
2.	for optimization of microbial products Microbes in food & dairy industry: Fermented foods- Introduction, Role & Advantages of fermented foods. Production of cheese, yoghurt, koji & Idli. Knowledge of other fermented dairy products. Single cell proteins-algae, bacteria, fungi, yeast & actinomycetes. Alcoholic beverages-Distilled and non distilled, Production of beer, wine & ethanol. Microbe as animal feed additives. Probiotics, Prebiotic & Synbiotics	0.75	15
3.	Microbes in Agriculture : Nitrogen fixation; Symbiotic & Non symbiotic Mechanism;Biofertilizers-Rhizobium, Azolla, Azospirillum, Algal Biofertilizers; Phosphate solubilizing microorganisms; Microbial biopesticide, biofungicide and herbicide; Micorrhiza; Plant –Microbe Interactions. Mushroom cultivation	0.5	10
4	Microbes & Environment: Biotechnology and pollution control; Use of immobilized microbial cell & enzyme in waste water treatment. Microbial biotransformation-Steroid, Microbial degradation of Herbicides, Insecticides & Pesticides; Bioremediation & Bioleaching	0.5	10
5.	Industrial &Pharmaceutical Applications : Methanogens & Biogas Production; Microbial Hydrogen production; Microbes in plastic industry - Bioplastics; Microbial biosensors- Micro oxygen electrode. Biochips; Biofilm; Bioactive compounds from microbes. Bioethanol & biodieseal production. Microorganism for Bioassay & as Bio weapon	0.75	15

TeachingandL earningAppro ach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	Mode of AssessmentL.Continuous Internal Assessment (CIA)1. Internal Tests of maximum 20 marks2. Seminar Presentation – a theme is to be discussed and identifiedto prepare a paper and present in the seminar Maximum marks 103. Write a detailed report on a given topic based on researchfindings and literature search – 10 marksM.Semester End examination – 60 marks

Compulsory Reading:

- 1. Biotechnology Fundamentals and Applications, S.S. Purohit and S.S. Mathur; Agro Botanical Publishers India.
- 2. Microbial Biotechnology, Alexander N Glazer & Hiroshi Nikaido Cambridge University Press.
- 3. Microbial Biotechnology, Farshad Darvishi harzevili Hongzhang Chen.CRC Press.
- 4. Microbial Biotechnology Principle & Applications Lee Yuan Kein.World Scientific Press.

Further Reading:

- 1. Microbial Technology-Fermentation Technology Vol 1 & 11 Peppler Perinas Elsiver.
 - 2. Biofertilizers in Agriculture, N.S.Subha Rao;Oxford & IBH Publishing Co.Pvt.Ltd New Delhi.
 - 3. Essentials of Biotechnology, R.C.Sobti & Suparna.S.Pachauri. Ane Books Pvt.Ltd.
 - 4. Fermentation Technology Vol I&II.
 - 5. Soil Microbiology N.S. Subha Rao, 1999
 - 6. Agriculture Microbiology Rangaswamy
 - 7. Microbial control and pest Management S. Jayaraj.
 - 8. Food Microbiology Frazier W.C and Westhoff D.C., Tata Mc Graw-Hill
 - 9. Food Microbiology Rose A.H. in Economic Microbiology, Academic Pr

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M PE 14 ECOLOGY AND ENVIRONMENT

Sch	ool Name	School of Bioscienc	es					
Pro	gramme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics						
Cou	irse Name	ECOLOGY AND E	CNVIR	ONMEN	Т			
Тур	e of Course	Elective						
Cou	irse Code	SBS M PE 14						
Nan Staf	nes of Academic ff	Dr J G RAY						
	irse Summary	The course is designed	to equip	students in	perceiv	ving, underst	tanding and	
άJ	ustification	analyzing environmenta	ıl probler	ns from a	n ecolog	gical perspec	ctive, and a	
		critical analysis of the	existing	control r	neasure	s from a h	olistic	
		perspective.						
Sem	nester			second				
Total Student Learning Time (SLT)		Learning Approach	Lecture	Tutorial	Practica	al Others	Total Learning Hours	
		Eg: Authentic learning Collaborative learning Independent learning	54	18	0	28	100	
Pre	-requisite	Knowledge in Biology	at Gradi	ate level				
N 0.		Expected Course Out	tcome			Learning Domains	PSO No.	
1	Students will b	e able to understand	and co	mmunicate	e the	R/U/A		
	sustenance of nat	ural biological systems o	n the eart	h effective	ely			
2	They will acquire skills in explaining all kinds of interrelationships				U/A			
	in natural biological systems							
3	3 Students will be able to explain environmental degradation and					U/An/Ap		
	pollution as outco	omes of ignorant and irre	sponsible	human ac	tions			

4	Students will be able to understand the significance of biodiversity		An/Ap	
	and its conservation in the sustenance of natural ecosystems			
5	Overall, students will be skilful in analyzing as well as designing	R	/U/A/An	
	and maintaining of environmental sustainability of all kinds of	/A	Ар	
	developmental activities			
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), reciation (Ap)	Skill	(S), Interest	(I) and
	No Module Content		Credits	Hours
1	Introduction to Ecology and different ecological object Basic concept of the environment – components of environment, the definition of ecology, ecological thir Autecological and Synecological concepts:	the	05	20 hrs
	A.Population Ecology (Autecological concepts) : Characteristics of populations (b) Genecology - eca ecotypes, ecospecies, coenospecies; k-selection and r-select populations			
	B. Synecological concepts(a) Ecological processes community formation, ecotone, edge effect. Classification communities - criteria of classification, dynamic system classification by Clement (b) Special plant communitie quantitative, qualitative and synthetic characteristics of pl communities, (c) Dynamic community characteristics - cyo replacement changes and cyclic no-replacement changes	of s - ant		
2	 Ecological succession -(a) The concept – autogenic a allogenic succession, primary and secondary, autotrophic a heterotrophic (b) Retrogressive changes or the concept degradation, concept of climax or stable communit resilience of communities, ecological balance and survi thresholds Biosphere and Ecosystem - (a) Significance of habit biodiversity, acalegical picks, trophic level, primary of the stable community of the stable communi	und of ies, val tat,	05	20 hrs
	biodiversity, ecological niche, trophic level, primary a secondary productivity, food chains, food webs, ecologi pyramids, energy flow and nutrient cycles (b) Comparat study of the significant world ecosystems: Different aquatic a terrestrial ecosystems concerning their productivity, 0.5 biodiversity, energy flow, food chains and trophic levels	cal ive and 57		
3.	Natural Resources: Soil, water and air Resources – soils a parent materials – ecology of soil fertility; Fresh water a marine resources – global distribution of water resources surface and groundwater resources – water conservation prevention of marine pollution – conservation of mar resources; Atmospheric resources – the structure of atmosph	and s – ine	0.5	10 hrs

	- climate and weather – climatic factors – precipitation, wind temperature, aerosols		
4	Environmental pollution : (a) Definition and classification (b) Water pollution: Water quality parameters and standards, different types of pollutants and their consequences. Types of water pollution, prevention and control - watershed management, different kinds of wastewater treatments; Phyto and bioremediation (c) Air pollution: Air quality standards and index, ambient air monitoring using high volume air sampler, types and sources of air pollutants, air pollution and human health hazards, control of air pollution: Causes and hazardous effects, effective management (f) Concept of solid wastes (g) Pollution Control - Bioremediation, Phytoremediation, bioaugmentation, biofilms, biofilters, bioscrubbers and trickling filters. Use of bioreactors in waste management	1.0	40 hrs
5	Climate Change and other Global Environmental issues - Factors responsible for climate change, Climate change mitigation – global conventions and protocols on climate change - El-Nino and La Nina phenomenon and its consequences; Environmental laws, environmental monitoring and bioindicators, environmental safety provisions in the Indian constitution, major ecological laws in free India; UNEP and its role in climate change control– IPCC, UNFCC, annual environment summits – 1973 Stockholm conference to 2015 Paris Conference – new developments of annual UNFCC meetings in the coming years - Future Earth Programme	0.5	10 hrs
	Total Credits of the Course Books for Reference	3	100 hrs
<u>C</u>			
-	sory Reading: ash (1993) Fundamentals of Ecology, Tata McGraw Hills		
	EP 3rd Edition (1991) Fundamentals of ecology, Saunders and Com	1	
	I Further Reading		
1. Barbou	ur MD et al. (1980) Terrestrial plant ecology. The Benjamin-Cummings Pu AH and Werner WE (1976) Field biology and Ecology, Tata McGraw Hil		
	-Canqui and Humberto LR (2008) Principles of Soil Conservation and ent, Springer		
4. Molles	s MC (2012) Ecology – Concepts and applications, 6th Edition, Mc Graw H	Hill	
Course e	evaluation:		
	eents & Seminar (10 marks each); Two internal test papers (20 ester examination (60 marks)) effects)	

SBS M PE 15: NEUROBIOLOGY

SchoolName	School of Biosciences						
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics						
Course Name	NEUROBIOLOGY						
Type of Course	Elective						
Course Code	SBS M PE 15						
Course Offered By	Dr Harikumaran Na	ir R					
Course Summary & Justification	Stress will be placed of The course will proce	This course is designed to provide an overview of Neurobiology. Stress will be placed on methods and concepts rather than facts alone. The course will proceed from the basic biophysical properties of neurons and glia to the physiological basis of learning, memory, and					
Semester	sensory processing Second						
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120	
Pre-requisite	Basics Knowledge in	Physiolog	gy	1	1		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Students should be capable of effectively communicating how neural system works	U	
2	Students should be able to explain electricity and the biophysics of cell	E	
3	Students should describe how do neurons talk to one- another	А	

4	Students should be able to explain how neural circuits organize information	A	
5	Students should be able to narrate how is information stored	E	
6	Lastly, students should gain a general understanding how is information collected and processed.	Ι	
	omber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea opreciation (Ap)	tte (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hrs
1	Introduction to neurobiology, the structure and distinguishing features of neurons, how is a neuron recognized? The architecture of nervous systems. Neuronal model systems. Chemical/electrical synapses. Recording/monitoring techniques.	0.5	10
2	Ionic basis of the resting potential. Maintenance of resting membrane potential, passive and active mechanisms, channels and pumps, ionic permeability	0.5	10
3.	Action potentials and ion channels, Mechanism of nerve action potential: Characteristics of action potential, initiation and propagation of action potential, voltage dependent sodium channels, mechanism of action potential propagation, factors affecting the speed of action potential propagation, molecular properties of voltage sensitive sodium channels, molecular properties of voltage dependent potassium channels, calcium dependent action potentials, voltage- clamp analysis of action potentials	1	20
4	Synaptic transmission: Chemical and electrical synapse, neurotransmitter release, synaptic potential, excitatory synaptic transmission between neurons, excitatory neurotransmitters, inhibitory synaptic transmission, inhibitory neurotransmitters, neurotransmitter gated ion channels, presynaptic inhibition and facilitation, neuronal integration, synaptic transmission at neuromuscular junction	0.5	10
5	Synaptic plasticity, language and cognition: Short term changes in synaptic strength, long term changes in synaptic strength, modification of synaptic strength in reflex circuits, learning, language function and cortical areas involved in language, cognition, dementia and loss of cognitive abilities	0.5	10
	Total Credits of the Course	3	60

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	Mode of AssessmentA.Continuous Internal Assessment (CIA)1. Internal Tests of maximum 20 marks2. Seminar Presentation – a theme is to bediscussed and identified to prepare a paper andpresent in the seminar Maximum marks 103. Write a detailed report on a given topicbased on research findings and literature search- 10 marksB.Semester End examination – 60 marks

Compulsory Reading

- 1. Basic Neurochemistry- Molecular, cellular and medical aspects. George J Siegel, Bernard W Agra noff R, Wayne Albers, Stephen K Fisher & Michael D Uhler
- 2. Neurobiology: Molecules, cells and systems. Gary G Mattews
- 3. From Neuron to Brain- John G Nicholls, A Robert Martin, Bruce G Wallace & Paul A Fuchs

Further Reading:

- 1. Neuroscience, edited by Purves, Augustine, Fitzpatrick, Hall, LaMantia, Mooney, Platt and White. Sinauer (2018) Sixth Edition.
- 2. Foundations of Neurobiology, Delcomyn, F. 1st edition W. H. Freeman and Company (1998)
- 3. Behavioral Neurobiology: An Integrative Approach, Zupanc, G. K. H. Oxford University Press. 2nd edition (2010)
- 4. Neurobiology: molecules cells and systems Gary G. Mathews 2nd edition. Blackwell Science Inc. (2001).
- 5. Neuroscience: exploring the brain. Bear, M., Connors, B.W. and Paradiso, M.A. 2nd edition Lippincott, Williams and Wilkins (2001)

Approval Date	

Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विद्यया अमृतमधन्त	SBS M PE 16 ENVIRONMENT SCIENCE

SchoolName	School of Biosciences					
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	ENVIRONMENT SCIENCE					
Type of Course	Elective					
Course Code	SBS M PE 16					
Course Offered By	Dr M S Jisha					
Course Summary & Justification Semester	This course on environmental Science deals with principles and scope of environment science. The objective of the course content is to create a sound awareness about the environment impact and its monitoring and Predict the consequences of human actions on the web of life, global economy and quality of human life The course content is designed with a view to augment CSIR/UGC syllabus second					
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutoria 1	Practic al	Others	Total LearningHou rs
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of biological sciences					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Gain in-depth knowledge on natural processes that sustain life and govern economy.	U/A	
2	Able to describe the principles of ecology	U/ C	
3	Develop critical thinking for shaping strategies (scientific, social, economic and legal) for environmental protection and conservation of biodiversity, social equity and sustainable development.	R/An	
4	Acquire values and attitudes towards understanding complex environmental-economic social challenges	U/R	
5	Understand the current environmental problems and preventing the future ones.	U/R	
6	Create an insight to the strategies and methodologies of environmental impact assessment	An/ C	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hrs
1	Definition, principles and scope of environmental science, Earth,	0.5	10
	Man and environment, ecosystem, pathways in ecosystem. Physic-		
	Chemical and Biological factors in the environment Geographical		
	classification and Zones. Structure and functions of ecosystem,		
	Abiotic and biotic components, energy flows, food chains, Food,		
	web, Ecological pyramids, types and diversity Terrestrial (Forest,		
	grass land) and Aquatic (Fresh water, marine, eustarine)		
	ecosystems. mineral cycling. Habitat and niche. Major terrestrial		
	biomes. Impact of microorganisms on global ecology,		
	microorganisms in extreme environment		
2	Definition, Principles and scope of ecology, Human ecology and	0.5	10
	Human settlement, evolution, origin of life and speciation		
	Population ecology characteristics and regulation. Community		
	ecology structure and attributes. Levels of species diversity and its		
	management, Edges and ecotones. Ecological succession. Concept		
	of climax. Common Flora and fauna in India. Endangered and		
	Threatened Species		

3.	Biodiversity status, monitoring and documentation Biodiversity	0.5	20
	management approaches. Conservation of biological diversity,		
	methods and strategies for conservation. Natural resources,		
	conservation and sustainable development. Hotspots of		
	biodiversity, National parks and Sanctuaries		
4	Environmental pollution- Air: Natural and anthropogenic source of	1.0	20
·	pollution, Primary and Secondary pollutants, Methods of		
	monitoring and control of air pollution, effects of pollutant on		
	human beings, plants animals, material and on climate, Acid rain,		
	Air Quality standards Water: types, Sources and consequences of		
	water pollution, Physio-chemical and Bacteriological sampling		
	and analysis of water quality, Soil: Physio-chemical and		
	Bacteriological sampling as analysis of soil quality, Soil pollution-		
	control, Industrial waste effluents, and heavy metals Their		
	interaction with soil components, Noise: Sources of noise		
	pollution, Noise control and battement measures. Impact of noise		
	on human health, Radioactive and thermal Pollution.		
	Bioremediation- Strategies for bioremediation, Biosensors,		
	biological indicators of pollution and monitoring. Detoxification		
	of hazardous chemicals, mycotoxins. Biological weapons		
5	Introduction to environmental impact analysis, Impact Assessment	0.5	10
	Methodologies Generalized approach to impact analysis,		
	Guidelines for Environmental Audit Introduction to environmental		
	Planning, Environmental priorities in India and Sustainable		
	development, Environment protection-issues and problems,		
	International and national efforts for environment Protection.		
	Global environmental problems-Ozone depletion, global warming,		
	climatic change, desertification, green movement, ecofeminism.		
	Current environmental issues in India		
	Total Credits of the Course	3	

Teachingand LearningApp roach	assroom Procedure (Mode of transaction) rect Instruction: Brain storming lecture, Explicit Teaching, E-learning, eractive Instruction:, Active co-operative learning, Seminar, Group ssignments Authentic learning, , Library work and Group discussion, esentation by individual student/ Group representative		
Assessment Types	Mode of Assessment N. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search - 10 marks O. Semester End examination – 60 marks		

Compulsory Reading:

- 1. Jonathan B (2016) Principles of Evolution, Garland Science, Taylor and Francis.
- 2. Odum E. P and Barret G W. Fundamentals of ecology. W. B Saunders company, Philadelphia
- 2. Chapman and Reiss, Ecology principles and applications. Cambridge University

Further Reading:

- 1. Jobes A. M., Environmental biology, Routledge, London.
- 2. Odum E. P. Basic ecology. Saunders College.
- 3. A textbook of environmental sciences, Arvind kumar.
- 4. Alleby M.Basics of environmental science. Routledge, Newyork
- 5. Cunningham, W. P and Siago, B. W, Environmental science.
- 6. Kewin T. P and Owen C. A., Introduction to global environmental issues. Routledge, London.
- 7. Chiras,D.D, Environmental science Cell and Molecular Biology by De Robertis E.D.P, 8th Edition

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M PE 17 MOLECULAR MICROBIOLOGY

SchoolName	School of Bioscience	es				
Programme	M.Sc. Microbiology/Biotechnology/Biochemistry/Biophysics					
Course Name		MOLE	CULAR N	/ICROBIC	DLOGY	
Type of Course	Elective					
Course Code	SBS M PE 17					
Course Offered by	Dr Radhakrishnan	EK				
Course Summary & Justification	various molecular b is an important br microorganisms is research purposes an significantly with th this course has been understanding on molecular biology recombinant protei microorganisms thro	This course on Molecular Microbiology deals with the applications of various molecular biological techniques in Microbiology. This course is an important branch of Microbiology. Rapid identification of microorganisms is very important for the clinical, diagnostic and research purposes and the methods used for the same have developed significantly with the advances in Molecular biology. The content in this course has been designed with an objective to provide detailed understanding on the techniques, principle and applications of molecular biology for the microbial identification, production of recombinant proteins and also for studying the unculturable microorganisms through metagenomics. This will enable the students to identify the research, learning and job opportunities based on the				
Semester			Second			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningH ours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding Knowledge in any br		0		ular biolo	ogy

CO Expected Course Outcome Learning PSO No
--

No.		Domains
1.	Students will able to understand and explain molecular biological applications in microbiology	R/U
2.	Students will able to learn rapid methods used for the microbial identification	R/U
3.	Students will able to understand the functioning of human microbiome and its beneficial role	U/ An/E
4.	Students will become able to understand molecular basis of microbial virulence	U/An/A
5.	Students will able to apply the knowledge for advanced microbiological applications	C/S
6.	Students will able to identify the research and technical opportunities in molecular microbiology	A/S
	ember (R), Understand (U), Apply (A), Analyse (An), Evalua terest (I) and Appreciation (Ap)	te (E), Create (C), Skill

Modu	Module Content	Cre	Hrs
le No	Malagalar high an of Minghigh and heting a DNA assessment of	dits	10
1	Molecular biology of Microbial evolution, rRNA sequence and	1	10
	cellular evolution, Signature sequence and phylogenetic probe. Identification and characterization of microorganisms, Molecular		
	methods for microbial identification, Molecular typing methods:		
	Bacterial strain typing, Pulsed Field Gel Electrophoresis, PCR-		
	based microbial typing, Genotyping by Variable Number Tandem		
	Repeats, Multilocus Sequence Typing, Automated Ribotyping		
2	Unculturable bacteria and Metagenomics, Methods used in	1.0	20
	metagenomics, New generation sequencing technologies for		
	metagenome study, Human microbiome, Importance of human		
	microbiome in relation to human health and disease.		
3.	Molecular basis of microbial virulence. Bacterial adherence: basic	05	10
	principles, effects of adhesion on bacteria and host cells. Bacterial		
	invasion of host cells; mechanism. Bacterial toxins: classification		
	based on molecular features, Molecular detection and		
	characterisation of bacterial pathogens, detection of bioterrorism.		
4	Microbial production of recombinant proteins: expression,	0.5	10
	purification and applications, Microbes in plant transformation,		
	Agrobacterium tumefaciens T-DNA transfer process, Application		
	of microorganisms for combinatorial and engineered biosynthesis,		
	Engineering <i>E.coli</i> for the production of curcumin	-	
	Total Credits of the Course	3	

Teaching and	Classroom Procedure (Mode of transaction)					
Learning Approach	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction, Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative					

Assessment Types	Mode of Ass	sessment				
	А.	Continuous Internal Assessment (CIA)				
		1. Internal Tests of maximum 20 marks				
		2. Seminar Presentation $-a$ theme is to be discussed and				
		identified to prepare a paper and present in the seminar				
		Maximum marks 10				
		3. Write a detailed report on a given topic based on				
		research findings and literature search – 10 marks				
	В.	Semester End examination – 60 marks				

REFERENCES

Compulsory Reading:

- Molecular Microbiology Diagnostic Principles and Practice, David H. Persing, Fred C. Tenover, James Versalovic, Yi-Wei Tang, Elizabeth R. Unger, David A. Relman, Thomas J., ASM Press., 2016
- Brock Biology of Microorganisms- Michael T. Madigan and John M.Martinko, Prentice Hall, 2015

Further Reading:

- 3. Microbial Physiology Albert G. Moat, John W. Foster and Michael P. Spector, 2002
- Metagenomics for Microbiology, Jacques Izard Maria Rivera, 1st edition, Academic Press Published Date: 12th November 2014
- Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems, Gerd Gellissen, May 2005Longman, 2013

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M PE 18 DEVELOPMENTAL BIOLOGY

Schoo	l Name	School of Bioscienc	es					
Progra	mme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics						
Course	e Name	DEVELOPMENTA	DEVELOPMENTAL BIOLOGY					
Туре о	of Course	Elective						
Course	e Code	SBS M PE 18						
Staff &	of Academic z ications	Dr J G RAY						
	Summary	The course is designed	to equip s	students in	perceiving	g, unders	tanding, and	
& Just	ification	analyzing reproductive	and em	bryologica	al develop	omental p	processes in	
		plants to apply the prin	nciples to	wards inc	reasing pl	ant produ	uctivity	
		through breeding.						
Semest	ter			second				
	Student ng Time	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
		E.g., Authentic learning Collaborative learning Independent learning	54	18	0	28	100	
Pre-ree	quisite	Knowledge in Botany	at the Gi	aduate le	vel	1	l	
No.		Expected Course Ou	tcome			rning nains	PSO No.	
1	Students will be able to understand and communicate the reproductive and developmental events in plants effectively					/U/A		
2	They will acquire the skills to explain all kinds of reproductive parts and seed developmental processes, including seed storage in plants				U/A			
3	They will be	able to explain how de proceeds in plants	velopmer	ntal proces	sses U/.	An/Ap		

	Books for Reference	<u> </u>	
	Total Credits of the Course	3	100 hrs
	Transition to flowering, floral meristems and floral development; Homeotic genes in plants; Senescence, programmed cell death and hypersensitive response in plants		
4	Morphogenesis and organogenesis in plants: Shoot and root development; Leaf development and Phyllotaxy.	1.0	30 hrs
	development - different types. Endosperm development, types of endosperm, haustorial behaviour of endosperm. Xenia and metaxenia. Polyembryony – types and causes. Seed formation, dormancy and germination. Apomixis, Parthenogenesis.		
3.	gametophyte development. Fertilization in Plants: Double fertilization; embryo	0.5	15 hrs
	concerning taxonomy. Viability of pollen grains Pollination, pollen germination, growth and nutrition of pollen tube. (c) Ovule: Structure, ontogeny and types. Megasporogenesis. Embryosac – development, classes, ultrastructure, and nutrition of embryosac. Female		
	kit, NPC formula. Applications of palynology- palynology		
	microsporogenesis, male gametophyte development. Palynology: Pollen morphology, exine sculpturing, pollen		
2	Development in flowering plants : (a) Angiosperm life cycle (b) Anther: Structure and development,	05	15 hrs
	gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in the analysis of development		
	Determination and Differentiation morphogenetic		
1	Introduction: Basic concepts of developmental Biology; An overview of plant and animal development, Potency, Commitment, Specification, Induction, Competence,	1.0	40 hrs
Module No	e Module Content	Credits	Hours
*Rememb Appreciat	ber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C) tion (Ap)), Skill (S), Interes	t (I) and
	successful completion of lifecycle in plants		
4	Students will be able to explain the specific developmental process and its ultimate impact on the productivity or	An/Ap	

Comp	ulsory Reading:	
1.	Maheswari P. 1950. An introduction to the embryology of Angiosperms.	
	McGraw Hill	
2.	Wolpert L, C Tickle and AM Arias (2015) Principles of development	
Optio	nal Further Reading	
1.	Krishnamurthy KV (2015) Growth and Development in Plants	
2.	Raghavan V (2000) Developmental Biology of Flowering Plants	
3.	Gilbert SF (2000) Developmental Biology	
4.	Developmental Biology, 8th Ed, Gilbert	
5.	Developmental Biology Paperback – 2008 by Werner A. Muller	
Assign	e evaluation: nments, 1 Seminar, and one assignment (10 marks each) Two internal test s (20 marks) end semester examination (60 marks)	

THIRD SEMESTER

SBS M P C 19: ENZYMOLOGY

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics					
Course Name	ENZYMOLOGY					
Type of Course	Core	Core				
Course Code	SBS M P C 19					
Course Summary & Justification	The course is designed to get a deep knowledge of the mechanisms by which cellular reactions are accelerated. The course builds a base for the students to understand and predict the metabolism of all living things and provide basics of drug development process related to enzyme targets and enzyme therapy					
Semester			Third		•	
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Eg. Authentic learning Collaborative learning Independent learning	80	20	0	40	140
Pre-requisite	Basic idea about pro	tein struct	ture and fu	inction		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To give details of different characteristics of enzymes, enzyme classification and nomenclature, different factors that affect their activity and their mechanisms of action.	U	
2	To contrast different modes of enzyme inhibition and regulation.	An/E	
3	To describe the structure and functions of vitamins and hormones	U	
	⊣ nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module	Module Content	Credits	Hours
<u>No</u>	Introduction to enzymes: Holoenzyme, apoenzyme, and prosthetic group; Interaction between enzyme and substrate- lock and key model, induced fit model, Features of active site, activation energy. Enzyme specificity and types; Enzyme Commission system of classification and nomenclature of enzymes (Class and subclass with one example) Mechanisms of enzyme action- Rate Enhancement Through Transition State Stabilization, Acid-base catalysis, covalent catalysis, metal ion catalysis (eg: Serine Proteases: cystenyl protease, aspartyl protease, metalloprotease, Lysozyme). Coenzymes and their functions - NAD, NADP+, FAD, FMN, lipoic acid, TPP, pyridoxal phosphate, biotin and cyanocobalamin Isolation and characterization of enzymes: Isolation of enzymes and the criteria of purity; Characterization of enzymes- active site mapping, Measurement and expression of enzyme activity, enzyme assays. Definition of IU, katals, enzyme turnover number and specific activity.	1.0	20
2	Enzyme kinetics: Factors affecting the velocity of enzyme catalyzed reaction- enzyme concentration, temperature, pH, substrate concentration, inhibitors and activators (explanation with graphical representation). Derivation of Michaelis -Menten equation and Km value determination and its significance, Definition of V_{max} value of enzyme and its significance, Lineweaver- Burk plot, Eadie-Hofstee and Hanes plots.Bisubstrate reactions: Classification, Reaction mechanisms.	1.0	20
3.	Enzyme inhibition: Reversible and irreversible – examples. Reversible- competitive, noncompetitive, uncompetitive inhibition and mixed inhibition, Irreversible inhibition- mechanism based inactivators, affinity labels, group specific inhibitors; Graphic Determination of Inhibitor Type; Dose—Response Curves of Enzyme Inhibition; Mutually Exclusive Binding of Two Inhibitors; Structure—Activity Relationships and Inhibitor Design; Tight Binding Inhibitors: Identifying Tight Binding Inhibition, examples; Time-Dependent Inhibition: examples; Distinguishing between modes of inhibitor interaction with enzyme	1.0	20
4	Regulation of Enzyme activity: Different covalent modifications,; Zymogen form of enzyme and zymogen activation; Multienzyme complexes and their role in regulation of metabolic pathways; Allosteric regulation: example Aspartate trascarbamoylase, Sigmoidal kinetics of allosteric enzymes, Models of Allosteric Behavior, Effects of Cooperativity on Velocity Curves. Isoenzymes- Lactate dehydrogenase and creatine phosphokinase.	0.5	10

5	Application of enzymes: Applications of enzymes in industry (eg:	0.5	10
5		0.5	10
	in food industry, paper and leather industry, detergent industry and		
	waste management).Diagnostic and therapeutic enzymes;		
	Applications of enzymes in life science research, Ribozymes,		
	Abzymes, Immobilised enzymes, Biosensors, synthetic enzymes,		
	Enzyme engineering		
	Total Credits of the Course	4	80
	Books for Reference		
-	ulsory Reading:		
1.	Fundamentals of Enzymology: The Cell and Molecular Biology of		
	by Nicholas C. Price, Lewis Stevens, and Lewis Stevens (2000)	Publisher:	Oxford
	University Press, USA ISBN: 019850229X ISBN-13: 9780	19850229	5, 978-
	0198502296		
2.	Enzyme Kinetics: A Modern Approach Book: Enzyme Kinetics: A	Modern A	pproach
	by Alejandro G. Marangoni (2003) Publisher: Wiley-Interscience ISBN: 04711598. ISBN-13: 9780471159858, 978-0471159858		
3.	Principles Of Biochemistry, 4/e (2006) by Robert Horton H , La	urence A	Moran,
	Gray Scrimgeour K Publisher: PearsarsonISBN: 0131	977369,	ISBN-
	13: 9780131977365, 978-0131977365		
4.	Biochemistry 6th Edition (2007) by Jeremy M.berg John L.tymoczko Lubert Strye		
	Publisher: B.i.publicationsPvt.Ltd ISBN:071676766X ISBN-13: 9780716767664		
	978-716767664		
5	Lehninger Principles of Biochemistry, Fourth Edition by David L.	Nelson F	David I
5.	Nelson (Author)		
Furth	er Reading:		
rurtii	Enzyme Kinetics and Mechanisms by Taylor Publisher: Spring IS	BN: 818/	800/78
•	ISBN-13: 9788184890471, 978-8184890471	DIN. 0104	-070+70
•	Enzyme Mechanism by P.K. Shivraj Kumar (2007) Publisher:		blighorg
•	ISBN: 8176114235 ISBN-13: 9788176114233, 978-8176114233	KDSA PU	011511015
-	,	DNI. 1005	710075
•	Enzymes and Enzyme Technology by Kumar (2009) Anshan Pub IS ISBN-13: 9781905740871, 978-1905740871		,
•	Enzymes in Industry: Production And Applications by Aehle W		
	John Wiley & Sons Inc ISBN: 3527316892 ISBN-13: 9783	52731689	2, 978-
	3527316892		
•	Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (see	cond Edit	ion) by
	Trevor Palmer, Philip Bonner (2007) Publisher: Horwood Publishin		· ·
	1904275273 ISBN-13: 9781904275275, 978-1904275275	-	

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative	
Assessment Types	Mode of Assessment P. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks Q. Semester End examination – 60 marks	

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विवया अपूरापप्रपुर	SBS M P C 20: CLINICAL BIOCHEMISTRY

SchoolName	School of Biosciences
Programme	M.Sc. Biochemistry
Course Name	CLINICAL BIOCHEMISTRY
Type of Course	Core
Course Code	SBS M P C 20
Course Summary &	This course provides a strong foundation to the students in understanding the nuances of disease biology and helps them to be

Justification	competent in pursuing clinical research or a job in clinical laboratories.					
Semester			Third			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Eg. Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic idea about human physiology					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	explain the pathogenesis of diseases	An/E	
2	To compare and contrast the symptoms, causes, treatment and management of in born errors of metabolism, life style and other diseases.	A/ An	
3	To elaborate the functioning of major organs and different methods to asses their functioning	An/I	
4.	To elaborate the principles of different diagnostic methods and to identify their pros and cons.	U/E	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hours
1	Biochemistry of metabolic disorders: Disorders of carbohydrate metabolism: Diabetes, galactosemia, pentosuria, fructosuria, Glycogen storage diseaseTs. Abnormalities of proteins in plasma, Urea cycle disorders; Disorders of amino acid metabolism: Phenylketonuria, alkaptonuria, albinism, tyrosinosis, maple syrup urine disease, Histidinemia. hymocystineuria, aminoacidurias Disorders of plasma lipids and lipoproteins, Lipid profile, hyperlipidemia, hyperlipoproteinemia Abetalipoproteinemia diagnostic tests for apolipoproteins HDL-cholesterol, LDL- cholesterol and triglycerides disorders. Gaucher's disease, Tay- Sach's and Niemann-Pick disease, Faber's diseas, Krabbe disease, Goucher's disease Disorders of nucleic acid metabolism: Disorders associated with purine and pyrimidine metabolism	0.5	10

2 Disorders of Electrolyte balance, acid-	, 8	10
and erythrocyte metabolism: Regulation body fluids and maintenance of pH, acid base disorders.		
Disturbances in blood clotting mechan disorders – haemophilia, von Willebra	-	
thrombotic thrombocytopenic purpura, dis coagulation, acquired prothrombin comple anticoagulants.	seminated intravascular	
Disorders of erythrocyte metabolism thalassemias, and anaemias, laboratory test and thrombolysis porphyria	-	
3. Biochemistry of life style Diseases-	0.75	15
 Cancer– Cellular differentiation, carcinoged definition, classification, biochemistry, an markers, eg:prostate-specific antigen, calcing gonadotropin, α- fetoprotein, and carce Recent developments in identifying protect detection cancer therapy. Diabetes Melllitus- types, diagnosi 	d distribution of tumor itonin, human chorionic sinoembryonic antigen.	
hypoglycemias, ketone bodies, Glucose Insulin tolerance test, treatment. Athero artery diseases; atherogenesis, fatty liver, a diagnosis, treatment.	tolerance tests (GTT) sclerosis and coronary	
Detoxification and excretory functional a enzymes.	t, urine-serum bilirubin, in plasma proteins, unalyses of liver, Liver	15
Renal function tests- Clearance tests, R urinalysis.	enal tubular functions,	
Gastric function tests- Resting and test analysis, stimulation tests, Tubeless gastric Pancreatic and thyroid function tests.		
5 Diagnosis of diseases: Collection and pre fluids. Diagnostic Enzymes –biochemical of enzyme assays – SGOT, SGPT, CPK, choli Molecular diagnosis of diseases- PCR me	diagnosis of diseases by inesterase, LDH.	10
karyotype, microarray. Biosensors Prenatal diagnosis and newborr collection, diagnostic methods and ethical i	n screening sample	
Total	Credits of the Course 3	60
Books for Refe	rence	

 Clinical Biochemistry: Metabolic And Clinical Aspects by William J. Marshall, Stephen K. Bangert, Elizabeth S.m. Ed. S.m. Ed. Marshall (2008) Publisher: Elsevier Science Health Science Div ISBN: 0443101868 ISBN-13: 9780443101861, 978-0443101861

Further Reading:

- Biochemistry by John K. Joseph (2006) Publisher: Campus Books International ISBN: 8180301109 ISBN-13: 9788180301100, 978-8180301100
- Basic Medical Biochemistry: A Clinical Approach by Dawn B., PH.D. Marks, Allan D. Marks Colleen M. Smith (1996) Publisher: Lippincott Williams & Wilkins; illustrated edition ISBN-10: 068305595X ISBN-13: 978-0683055955
- Clinical Chemistry, 6/e Ie by William J Marshall, Stephen K Bangert (2008) Publisher: Else ISBN: 0723434603, ISBN-13: 9780723434603, 978-0723434603
- Tietz Fundamentals of Clinical Chemistry, 6/e by Carl A Burtis, Edward R Ashwood (2008) Publisher: Else ISBN: 8131213749, ISBN-13: 9788131213742, 978-8131213742

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative	
Assessment Types	Mode of Assessment R. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks S. Semester End examination – 60 marks	

	· · · · · · · · · · · · · · · · · · ·
Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P C 21: PHARMACEUTICAL BIOCHEMISTRY

SchoolName	School of Biosciences	School of Biosciences				
Programme	M.Sc. Biochemistry					
Course Name	PHARMACEUTICAL BIOCHEMISTRY					
Type of Course	Core					
Course Code	SBS M P C 21					
Course Summary & Justification Semester	The course is designed to get a basic knowledge in the area of therapeutics and their mechanism of action and to create awareness about drug discovery process.					
	Third					
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Eg. Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding of	f drugs				

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.		
No.		Domains			
1	To identify relationship between the chemical structure	U			
	and biological activity of therapeutic drugs/chemical				
	compounds as a part of modern medical and				
	pharmaceutical research.				
2	To design and synthesis new drugs and to analyze how	С			
	they interact with diseases and the human body to				
	develop methods to treat diseases. and functional				
	characters of different biomolecules				
3	To select suitable tools and its applications in drug	E/Ap			
	discovery process.				
*Remem	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I)				
and App	and Appreciation (Ap)				

Module	Module Content	Credits	Hours	
--------	----------------	---------	-------	--

1 Introduction to pharmacology: Sources of drugs, dosage forms & routes of drug administration. Physicochemical Properties of Drugs- Acidity/Basicity, Solubility, Ionization, Hydrophobic properties, Hydrophilic properties. Stereochemistry and Drug Action- Concept of Configuration and Conformation with examples, Concept of Stereochemistry with respect to biological response with examples, Stereo chemically pure drug and recemates. Drug targets. 0.5 10 2 Pharmacodynamics: Mechanism of drug action, concept of receptors, combined effect of drugs, factors modifying drug action, tolerance & dependence. Adverse response and side effects of drugs- allergy, Drug intolerance, Drug addiction, drugs abuses and theirbiological effects. 0.5 10 3. Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. Role of kidney in elimination. Drug metabolism: chemical pathways of drug metabolism Phase I and Phase II reactions, role of cytochrome P450, non-microsomal reactions of drug: the adverse response and Anabolic steroids – Testosterone, Stanazolol. Estrogens and molecular docking Application of bioinformatics in drug designing process. 0.5 10 5 Databases of drugs: drug bank, Cambridge structural database (CSD). Concept of rational drug design, Structure activity relationship. Drug-receptor understanding, Molecular modeling, Structure based drug design and molecular docking Application of bioinformatics in drug designing process. 0.5	No			
receptors, combined effect of drugs, factors modifying drug action, tolerance & dependence. Adverse responses and side effects of drugs- allergy, Drug intolerance, Drug addiction, drugs abuses and theirbiological effects. 0 3. Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. Role of kidney in elimination. Drug metabolism: chemical pathways of drug metabolism Phase I and Phase II reactions, role of cytochrome P450, non-microsomal reactions of drug metabolism, drug metabolizing enzymes. 1.0 20 4 Chemotherapy: General Principles of Chemotherapy: Chemotherapy of Parasitic infectins, Fungal infections, Viral diseases and Chemotherapy of Cancer. Mode of action, uses, structure- activity relationship of the following classes of Drug: Androgens and Anabolic steroids – Testosterone, Stanazolol. Estrogens and Progestational agents – Progesterone, Estradiol. Antibiotics- Penicillins, streptomycin, tetracyclines. 0.5 10 5 Databases of drugs: drug bank, Cambridge structural database (CSD). Concept of rational drug design; Structure activity relationship, Drug-receptor understanding, Molecular modeling, Structure based drug design and molecular docking Application of bioinformatics in drug designing process. 0.5 10 Books for Reference Compulsory Reading:	1	forms & routes of drug administration. Physicochemical Properties of Drugs- Acidity/Basicity, Solubility, Ionization, Hydrophobic properties, Hydrophilic properties. Biological activity parameters- LD 50, EC 50, ADMET properties. Stereochemistry and Drug Action- Concept of Configuration and Conformation with examples, Concept of stereochemistry with respect to biological response with examples, Stereo	0.5	10
distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. Role of kidney in elimination. Drug metabolism: chemical pathways of drug metabolism Phase I and Phase II reactions, role of cytochrome P450, non- microsomal reactions of drug metabolism, drug metabolizing enzymes. 4 Chemotherapy: General Principles of Chemotherapy: 10 20 Chemotherapy of Parasitic infectins, Fungal infections, Viral diseases and Chemotherapy of Cancer. Mode of action, uses, structure- activity relationship of the following classes of Drug: Androgens and Anabolic steroids – Testosterone, Stanazolol. Estrogens and Progestational agents – Progesterone, Estradiol. Antibiotics- Penicillins, streptomycin, tetracyclines. 0.5 5 Databases of drugs: drug bank, Cambridge structural database 0.5 (CSD). Concept of rational drug design; Structure activity relationship, Drug-receptor understanding, Molecular modeling, Structure based drug design and molecular docking 3 60 Books for Reference Compulsory Reading: 1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Orga	2	Pharmacodynamics: Mechanism of drug action, concept of receptors, combined effect of drugs, factors modifying drug action, tolerance & dependence. Adverse responses and side effects of drugs- allergy, Drug intolerance, Drug addiction,	0.5	10
4 Chemotherapy: General Principles of Chemotherapy: Chemotherapy of Parasitic infectins, Fungal infections, Viral diseases and Chemotherapy of Cancer. Mode of action, uses, structure- activity relationship of the following classes of Drug: Androgens and Anabolic steroids – Testosterone, Stanazolol. Estrogens and Progestational agents – Progesterone, Estradiol. Antibiotics- Penicillins, streptomycin, tetracyclines. 0.5 10 5 Databases of drugs: drug bank, Cambridge structural database (CSD). Concept of rational drug design; Structure activity relationship, Drug-receptor understanding, Molecular modeling, Structure based drug design and molecular docking Application of bioinformatics in drug designing process. 0.5 60 Eooks for Reference Compulsory Reading: 1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Organic	3.	distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. Role of kidney in elimination. Drug metabolism: chemical pathways of drug metabolism Phase I and Phase II reactions, role of cytochrome P450, non- microsomal reactions of drug metabolism, drug metabolizing	0.5	10
(CSD). Concept of rational drug design; Structure activity Image: Concept of rational drug design; Structure activity relationship, Drug-receptor understanding, Molecular Image: Concept of rational drug design and molecular docking Application of bioinformatics in drug designing process. Image: Concept of rational drug designing process. Total Credits of the Course 3 Books for Reference Image: Compulsory Reading: 1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Organic	4	 Chemotherapy: General Principles of Chemotherapy: Chemotherapy of Parasitic infectins, Fungal infections, Viral diseases and Chemotherapy of Cancer. Mode of action, uses, structure- activity relationship of the following classes of Drug: Androgens and Anabolic steroids – Testosterone, Stanazolol. Estrogens and Progestational agents Progesterone, Estradiol. Antibiotics- Penicillins, 	1.0	20
Books for Reference Compulsory Reading: 1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Organic	5	Databases of drugs: drug bank, Cambridge structural database (CSD). Concept of rational drug design; Structure activity relationship, Drug-receptor understanding, Molecular modeling, Structure based drug design and molecular docking	0.5	10
Compulsory Reading: 1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Organic		Total Credits of the Course	3	60
1. Delagado J N and Remers W A R, Eds., Wilson And Gisworld's Text book of Organic		Books for Reference	<u> </u>	<u> </u>
Medicinal and Pharmaceutical Chemistry, J. Lippincott Co., Philadelphia.	1. Delag	• 0		Organic

- 2. Foye W C, Principles of Medicinal Chemistry, Lea & Febiger, Philadelphia.
- 3. Singh Harkrishan and Kapoor, V.K., Organic Pharmaceutical Chemistry, Vallabh

Prakashan, Delhi.

4. Finar I L, Organic Chemistry, Vol. I & II, ELBS/ Longman, London.

Further Reading:

- 5. Katzung, B.G. Basic & Clinical Pharmacology, Prentice Hall, International.
- 6. Rang MP, Dale MM, Riter JM, Pharmacology Churchill Livingstone.
- 7. Tripathi, K.D. Essentials of Medical Pharmacology, Jay Pee Publishers, New Delhi.

8. Ghosh, MN; Fundamentals of Experimental Pharmacology, Scientific Book Agency, Calcutta.

9. Kulkarni S.K., Hand Book of Experimental Pharmacology, Vallabh Prakashan, Delhi.

10.Barar F.S.K: Text Book of Pharmacology, Interpoint, New Delhi.

Suggested websites for Unit V

1. www.drugbank.ca

2. www.ccdc.cam.ac.uk/products/csd/

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative,		
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks B. Semester End examination – 60 marks		

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P C 27: LABORATORY COURSE-4 BIOCHEMISTRY

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry					
Course Name	LABORATORY COURSE 4 BIOCHEMISTRY					
Type of Course	Core	Core				
Course Code	SBS M P C 27					
Course Summary & Justification	The course is designed to develop in students the essential skills to perform enzyme assays and related techniques. This will enhance the practical skills to perform enzyme-related methods and computational drug discovery process. This course is also designed to equip students in performing tests important for clinical diagnosis.					
Semester	Third					
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	10	20	240	30	300
Pre-requisite	General idea on reagen	nts and so	olvents		1	

Expected Course Outcome	Learning Domains	PSO No.
To design and perform enzyme assays and determination of other major metabolites from blood or body fluids	C/S	
To extract and purify enzymes from different sources and to examine their kinetic behavior	A/An/E	
To prepare and charaterise immobilized enzymes		
	 determination of other major metabolites from blood or body fluids To extract and purify enzymes from different sources and to examine their kinetic behavior 	To design and perform enzyme assays and determination of other major metabolites from blood or body fluidsC/STo extract and purify enzymes from different sources and to examine their kinetic behaviorA/An/ETo prepare and charaterise immobilized enzymesImage: Compare the source of the sourc

	methods				
3	To perform tests to assess blood coagulation	S			
	To perform organ function tests				
4	To design quality control chart	С			
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module	Module Content	Credits	Hours
No	Protocol for blood collection and storage.	0.5	30
	Bleeding time, clotting time, Prothrombin time, Thrombin time, Euglobulin lysis time		
2	 Extraction of enzymes and assay: Acid phosphatase from Fresh Potato (<i>Solanum tuberosum</i>) β- amylase from Sweet potato (<i>Ipomoea batates</i>) Enzyme Kinetics: Effect of Substrate Concentration on velocity of Enzyme catalyzed reaction: Determination of KM and Vmax using Line weaver- Burk plot Effect of Temperature on velocity of Enzyme catalyzed reaction: Determination of Q10 Effect of pH on velocity of Enzyme catalyzed reaction: Effect of activators on velocity of Enzyme catalyzed reaction: Determination of type of inhibition using Line-weaver Burk plot 	1.25	75
3.	 Docking of Enzymes with ligand molecules using docking softwares Determine the drug likeliness of ligand molecules Determining Binding energies of ligand with receptors Determining Ki values 	0.5	30
4	Liver Function Tests: Assay of SGOT, SGPT, Estimation of Total Bilirubin, Conjugated Bilirubin, Total protein, A/G ratio Renal Function Tests: Estimation of blood urea, Urine urea, Urea clearance, Creatinine clearance, serum creatinine, urine creatinine, serum uric acid Cardiac function tests: Serum Lipid Profile, Estimation of serum LDH and Creatine Kinase, Estimation of fasting and post prandial blood sugars, GTT	1.5	90

5	Quality control chart	0.25	15			
			• 10			
	Total Credits of the Course4240					
	Books for Reference					
Comp	ulsory Reading:					
1.	Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh ((eds) Naros	sa			
	Publishing House, New Delhi, ISBN 81-7319-302-9, p 195 – 303					
2.	Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), K	Kalyani Pul	blishers,			
	Ludhiana ISBN 81-7663-067-5, p 12 - 182.					
3.	Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa	Publishing	g House,			
	New Delhi, ISBN 81-7319-302-9, p 195 – 303					
Furth	er Reading:					
1.	Hawk's Physiological Chemistry, Bernard L. Oser (ed) TATA	McGRA	W Hill			
	Publishing Company LTD, New Delhi, p 60 – 127, 1317- 1334					
2.	Experimental Biochemistry: A Student Companion, Beedu Sasid					
	Deshpande (ed), I.K International Pvt. LTD, New Delhi ISBN 81-8	88237-41-	8, p 13-			
	17, p 49 - 72	~ ~				
3.	Practical Biochemistry, R.C. Gupta & S. Bhargava (eds) CBS	S Publish	ers and			
	Distributors, New Delhi, ISBN 81-239-0124-0 p 9 – 27		ŊŢ			
4.	Practical Clinical Chemistry, Harold Varley, CBS Publishers and	Distributo	rs, New			
	Delhi,					

Teachingand	Laboratory Procedure (Mode of transaction)
LearningApp	Direct Instruction: lecture, Explicit Teaching, Demonstration, Hands on
roach	experimental sections, Skill acquisition by laboratory training, journal Club
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Laboratory Skill Tests of maximum 20 marks

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 42: QUALITY CONTROL IN HERBAL DRUGS

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics					
Course Name	QUALITY CONTRO	QUALITY CONTROL IN HERBAL DRUGS				
Type of Course	Elective					
Course Code	SBS M P E 42					
Course Summary & Justification	Ū.	The course is designed to get a clear idea on quality control approaches in natural herbs and products and modern analytical techniques for the analysis of the herbal drugs.				
Semester			Third			
Total StudentLearning Time (SLT)	Learning Approach	Learning Approach Lecture Tutoria Practic Others Total l al LearningHou				
	Eg. Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding o	f plant-ba	ased drug	<u></u> s		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To estimate the quality assurance of herbal materials.	С	
2	To isolate, purify and characterize the photochemical from medicinal plants.	A	
3	To interpret the structure of natural products	U/E	
	mber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hours
1	WHO Guidelines for Quality Control of herbal raw materials. Determination of pesticide residue, arsenic and heavy metals, afflatoxins and microbial contaminants	0.5	10
2	Definition, principle of the various extraction techniques like maceration, percolation, hot continuous extraction, pilot scale extraction, microwave assisted extraction and supercritical fluid extraction. GMP for the production of quality botanicals.	1	15
3.	General methods for isolation and purification of active principles from medicinal plants. Application of chromatographic techniques in isolation & characterisation of phytochemical constituents viz., paper chromatography, thin layer chromatography, column chromatography, gas chromatography (GC), high performance liquid chromatography (HPLC) and high performance thin layer chromatography(HPTLC).		10
4	Role of chemical and biological markers in standardization of herbal products		10
5	General methods for structural elucidation of natural products, Application of spectroscopy for characterization of phytoconstituents	0.5	15
	Total Credits of the Course	3	
C	Books for Reference		
-	Ilsory Reading: 1. Herbal Drug Technology, S. S. Agrawal, M. Paridhavi, Publisher Press, 2007, ISBN 8173715793, 9788173715792	Universit	ies
Furthe	r Reading:		
	2. Pharmaceutical Analysis Hiquchi, Bechmman, Hassan.		
	3. Methods of Drug Analysis Gearien, Graboski.		
	4. Text Book of BioPharmaceutic Analysis Robert Smith and Ja	amesStewa	urt.
	5. Pharmaceutical Analysis Modern methods Part A and B Mur	ison James	s.W.
	6. Quantitative Analysis of DrugsGarrot.		

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic earning, Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment	ctive co-operative learning, Seminar, Group Assignments, Authentic				
Types	arning, Library work and Group discussion, Presentation by individual				

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY	
विद्याया अमृतमञ्जूत	SBS M P E 43: IPR AND PATENTING	

School Name	School of Biosciences
Programme	Msc Biotechnology/ Biochemistry/ Biophysics/ Microbiology
Course Name	IPR AND PATENTING

Type of Course	Elective					
Course Code	SBS M P E 43					
Course Summary & Justification	To introduce students the concept of intellectual property and IPR					
Course Offered by	Dr Linu Mathew	Dr Linu Mathew				
Semester		Third				
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisites	None			1		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	On completing this course, the student will be able toDefine different international agreement on IPR	u	
2	Analyse the patentability of an invention and laws on plant variety protection	An	
3	Compare the patentability of biological entities	U	
4	File a patent	S	
5	Communicate effectively about a patent related topic both verbally and in writing	An/ C	
	mber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hrs
1	Introducti Introduction. Definitions General Agreement on Trade and Tariff (GATT) and World Trade Organizations Establishment and functions of GATT, WTO, and WIPO. WTO Guidelines and Summits. Physical and Intellectual Property	0.5	10
2	TRIPS Different types of intellectual property rights (IPR) - Patents, Trade mark, Trade secret, copyright and Geographical indications Requirement of patentability, Biotechnological	0.5	10

	examples of patents, trademark, trade secret and copy right		
3.	Patenting research tools and the law: Patents as a Strategy for Protection of Intellectual Property, Benefits and Costs of Patents, Requirements for Patent Protection, patentable subjects and protection in biotechnology, international convention for the protection of new varieties – Strasbourg convention, UPOV convention. Experimental Use Exemption	0.5	10
4	Patent filing and Infringement Patent application- forms and guidelines, fee structure, time frames; Types of patent applications: provisional and complete specifications; PCT and convention patent applications; International patenting- requirement, procedures, and costs; financial assistance for patenting-introduction to existing schemes; Indian Patent Act, 1970 and recent amendments Publication of patents in India Status of patenting in Europe and US. Patenting by research students, lecturers, and scientists University/organizational rules in India and abroad, credit sharing by workers, financial incentives, Patent infringement- meaning, scope, litigation, case studies and examples	1	20
5	The patentability of microorganisms, legal protection for plants and other higher organisms, new plant varieties by rights, tissue culture protocols, transfer of technology. Patentability of vectors. Licensing - Flavr Savr [™] tomato as a model case, Biopiracy and case studies on patents (Basmati rice, Turmeric, and Neem)	0.5	10
	Total Credits of the Course	3	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	 Mode of Assessment V. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search – 10 marks W. Semester End examination – 60 marks

REFERENCES

Compulsory Reading:

- 1. Patents (2003), N.Subbaram, Pharma Book Syndicate, Hyderabad.
- 2. WIPO Hand book on Intellectual Property
- 3. IPR, Biosafety, and Bioethics Deepa Goel and Shomoni Parashar

Further Reading:

- 1. Revised guidelines for research in Transgenic plants (August 1998), Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi.
- 2. Intellectual Property, W.R. Cornish, Sweet and Maxwell publishers, London

Web resources

- 1. https:// worldwide. espacenet.com
- 2. https:// patentscope. wipo. int
- 3. https://ipindiaservices.gov.in

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
. AOTTAVANI	SBS M P E 44: ADVANCED TECHNIQUES IN DIAGNOSTIC
िविद्यया अमृतमञ्जूत	MICROBIOLOGY

SBS M IV E 1770 ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY

SchoolName	School of Biosciences					
Programme	M.Sc. Microbiology	M.Sc. Microbiology/Biotechnology/Biochemistry/Biophysics				
Course Name	ADVANCED TECH	INIQUES	S IN DIAG	NOSTIC M	AICROB	IOLOGY
Type of Course	Elective					
Course Code	SBS M P E 44					
Course Summary & Justification	Different methods are used to detect the diseases caused by microorganisms. The syllabus content in this course has been designed with an objective to provide the basic principle and applications of various methods used in diagnostic microbiology. This will enable the students to learn the basic and advanced methods in diagnostic microbiology which will enable them to identify the research and job opportunities based on the latest developments in this subject					
Semester	Third					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningH ours
Decementation	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basic understanding on diseases caused by microorganisms, different methods used to detect the diseases					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1.	Students will able to understand the process and methods in medical microbiology lab	R/U	
2.	Students will able to understand various clinical samples used for diagnostic applications	R/U	
3.	Students will able to explain the principles of methods used in medical microbiology	U/ An/E	
4.	Students will get exposed to both the conventional and rapid methods used for the microbial identification	U/An/A	
5.	Students will able to identify research and job opportunities in diagnostic microbiology	C/S	

6.	Students will able to analyze scope of technological	S/I	
	advancement for rapid microbial identification		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)		

Mod ule No	Module Content	Credi ts	Hrs
1	Introduction to diagnostic microbiology, laboratory safety, hospital epidemiology. Lab methods in Medical Microbiology, basic virology, basic mycology, Clinical material - collection and transport. Etiological agents recovered from different clinical materials	1.0	10
2	Biochemical profile based microbial identification systems, Urea breath test, Rapid antigen tests, Enzyme-Linked Immunoassay, Western blot, Advanced antibody detection, Bacterial antimicrobial susceptibility tests	1.0	20
3.	Polymerase chain reaction, Principle, applications and types of PCR in medical diagnostic field, Microbial Identification Based on PCR amplification of 16S rDNA, Sequence analysis, Application of Real Time PCR in Diagnostic Microbiology, Microbial Strain Typing Using Repetitive Sequences Advances in the Diagnosis of <i>Mycobacterium tuberculosis</i> and methicillin resistant <i>Staphylococcus aureus</i> .	0.5	10
4	Probe-Based Microbial Detection and Identification, Southern Blot Hybridization, Microarray- Based Microbial Identification and Characterization, Recent advances in medical microbiology	0.5	10
	Total Credits of the Course	3	

TeachingA nd Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction, Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	Mode of Assessment
	A. Continuous Internal Assessment (CIA)
	1. Internal Tests of maximum 20 marks
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - Maximum marks 10

	rite a detailed report on a given topic based on research gs and literature search – 10 marks
В.	Semester End examination – 60 marks

REFERENCES

Compulsory Reading:

1. Bailey and Scott's Diagnostic Microbiology Publisher: Elsevier Health, 28 Jun 2013

2. Advanced Techniques in Diagnostic Microbiology Editors: Wu, Shangwei, Stratton,

Charles, 2012

Further Reading:

3. Textbook of Diagnostic Microbiology Hardcover, by Mahon (Author), Publisher:

Elsevier Health - US; 5 edition (18 February 2014)

4. Koneman's Color Atlas and Textbook of Diagnostic Microbiology 7th Edition by Gary

W. Procop MD MS, Elmer W. Koneman, Publisher: LWW; 7 edition (June 15, 2016)

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
	SBS M P E 45: RADIATION BIOPHYSICS

SchoolName	School of Biosciences
Programme	Msc Biochemistry/ Microbiology/ Biotechnology/ Biophysics
Course Name	RADIATION BIOPHYSICS
Type of Course	Elective
Course Code	SBS M P E 45

Course Summary & Justification	To introduce the student to an important division of Biophysics- Radiation Biophysics To familiarize the topics of Radiation and Radioactivity, its interactions, biological effects, dosimetry, hazards, protection and application in medicine, industry and agriculture The course is designed to provide an overview of different imaging techniques used in medical field							
Semester			Third					
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning6020040120CollaborativeIndependentIndependentIndependentIndependentIndependent							
Pre-requisite	Basics of Radiation	biophysic	S	I		1		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To describe various kinds of radiation and radiation units	E	
2	To explain the various biological effects of radiation	U/ An	
3	To narrate how to detect and measure radiation	R	
4	To explain how to protect from radiation exposure	S	
5	To describe the use of radioisotopes in medicine, industry and agriculture	E	
6	To discuss about the biomedical imaging techniques	An/ C	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module No	Module Content	Credits	Hrs
1	Radioactivity: Laws of radioactivity, α , β , γ rays. Properties of electromagnetic radiation. Radiation units; Exposure and Dose, Dose equivalent unit, KERMA, Absorbed dose and Derived Units-Equivalent Dose and Effective dose, Dose rate. Interaction of radiation with matter- Bremsstrahlung, Photoelectric effect, Compton effect, Ion pair production. Interaction, absorption and scattering of electron. Heavy charged particles and Neutrons.	0.5	10

	Attenuation coefficient and absorption coefficient. HVL, Mean free path, Absorption edges, LET, Relative biological effectiveness (RBE)		
2	Biological effects of radiation: Radiolysis of water, Production of free radicals & their interactions, Competition kinetics, Diffusion kinetics & Physicochemical effects, Role of scavengers, G-value, Genetic Effect of radiolysis, Chromosomal breakage and Aberrations Direct and Indirect action, Oxygen and temperature effect, OER. Target theory, Single hit & Multi hit theory, Multi target theory, Calculation of target, Mass, Volume & Molecular weight, Effect of radiation on Nucleic acids, Proteins, Enzymes & Carbohydrates, Somatic and genetic effects of radiation, Stochastic and deterministic effects, early and late effects, Radiation sickness, Radiation syndrome, Haemopoietic syndrome, G.I syndrome, CNS syndrome, Acute radiation damage, Early and late effects of radiation damage, LD-50, Dose effect relationship. Cell recovery and modification of Radiation damage	0.5	10
3.	Radiation dosimetry : Principles of radiation detection and measurement- Dosimetry- General requirements of Dosimeters, Radiation sources, Telegamma Unit (Cobalt unit), Gamma chamber, Nuclear reactors, Thermal & fast neutron sources. Dosimeters- Basic principles, Design & Working of physical dosimeters- Ionization chamber, Proportional counters, GM- Counter, Concepts of Gas amplification, Resolving time & Dead time, Scintillation Detectors, Thermolumeniscent Dosimeter, Semiconductor, Surface barrier & Lithium detectors, Area survey meter & Pocket dosimeter, Film badge, General principle of chemical dosimetry, Salient Features of Chemical dosimeter, Dose evaluation formula for chemical dosimetry, Principles of radiolytic reaction, Experimental methods- Influencing factors of Fricke dosimeter methyl orange, FBX dosimeter, Free radical dosimeter, High & low dose indicators	1.0	20
4	Radiation Hazards and Protection : Natural and man-made radiation exposures, maximum possible dose, Radiation hazards- external and internal radiation hazards. Radiation protection measurement in industrial establishment, Radioisotope labs, diagnostic and therapeutic installation and during the transportation of radioactive substances, Disposal of radioactive wastes.	0.5	10

5	Applications of radiation- Radioisotopes in Biology, Agriculture,	0.5	10
	Plant breeding, Plant Physiology, Medicine. Internally		
	administered isotopes. Radioiodine in thyroid function analysis.		
	Renal, liver and lung function analysis. Radio Immuno Assay,		
	Radiotracer techniques. Auto radiography. Specialized radio		
	isotopic applications in industries		
	Biomedical imaging techniques- Principle of analogue and		
	digital imaging, Ultra sound imaging, Nuclear resonance imaging,		
	X-ray imaging and CT scan, Principle of tomographic		
	techniques, Computerised tomography, positron emission		
	tomography, application and interpretation of image		
	Total Credits of the Course	3	

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative						
Assessment Types	Mode of Assessment X. Continuous Internal Assessment (CIA)						
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks Y. Semester End examination – 60 marks 						

REFERENCES

Compulsory Reading:

- 1. Glenn.F. Knoll., Radiation detection and Measurement; III Edition, John Wiley & Sons, Inc.
- 2. Edward L. Alphen., Radiation Biophysics[©], Prentice Hall

Further Reading:

- 1. Frank.H. Attix., Introduction to Radiological Physics & Radiation dosimetry
- 2. Wagner, Szabo, Buchanan., Principles of Nuclear medicine.
- 3. Orton, C.G., Radiation Dosimetry: Physical and Biological aspects.
- 4. Girish Lahari- Nuclear Physics, Mohit Books International.

- 5. S.P.Yarmonenko;Radiobiology, Mir Publishers.
- 6. JozsefKonya.Noemi M. Nagy; Nuclear and Radiochemistry,Elsevier insight

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY					
SBS MP E 46: ALGAL BIOFUEL TECHNOLOGY						
School Name	School of Bi	oscien	ces			
Programme	M.Sc. Biochemistr	y/Microl	biology/Bi	otechnolo	gy/Biopl	nysics
Course Name	ALGAL BIOFUEL TECHNOLOGY					
Type of Course	Elective					
Course Code	SBS MP E 46					
Names of Academic	Dr J G RAY					
Staff & Qualifications						
Course Summary &	The course is to in	troduce t	he nature	and princi	ple of di	fferent form of
Justification	biomass energy, fa	amiliarize	the prine	ciple in th	ne selecti	ion of suitable
	biomass fuels for	differen	t bioenerg	gy applica	ations ar	nd explain the
	advantages and lim and oil.	itations o	f biofuels	over tradit	tional fue	els such as coal
Semester			Third	1		
			Thire	•	1	
Total Student Learning	Looming Armost	Lecture	Tutorial	Practical	Others	Total Learning
Time (SLT)	Learning Approach	Lacture	i utoriar	Tractical	Guicis	Hours
	E.g., Authentic	54	18	0	28	100
	learning Collaborative					
	learning					
	Independent					

			learning							
Pre-r	equisite	;	Knowledge ir	Botan	y at th	e Gradua	te leve	el		
No.		E	Expected Cours	e Outco	ome			Learning Domains	P	SO No.
1	Develop a critical knowledge of the concept of biomass energy						R/U/A			
2	Identify the ecological importance of algae as a biomass resource						U/A			
3	Acqu resou		skills of utilizat	tion of a	algae as	a biofuel		U/An/Ap		
4	Unde resou		mportance of al	gae as a	a sustai	nable ene	ergy	U/An		
5	Understand the importance of algae as a sustainable energy U/ An resource									
	mber (R) ciation (A		U), Apply (A), Ana	lyse (An)	, Evalua	te (E), Cred	ate (C),	Skill (S), Inter	est (I) a	nd
Mod	ule No			Mod	lule con	tent				Credits offered
1		 petroleum energy form characteristic generation Significance morphologic three majori 	n – Current situ n fuels – scope ms – wind, geo cics of biomass and 3rd geo e of algal biom y and taxonomy r groups – cya nacro algae in b	, limitat otherma s as so neration nass res y of alg nobacte	tions an al, solar ource o biofu source ae- mo ria – g	nd challer - limita f energy uels – s - classifi rphologic reen alga	nges; v ntions – 1st scope cation al cha	arious altern and scope; generation, and limita of algae – racteristics o	ative Basic 2nd tions basic f the	1.0
2		Basic chara vs. Hetero ProcessDev Scale Cult Nutrient So Conservatio open ponds of biomas Sedimentat	acteristics of alg trophic - Open velopment-Scale tures, Scalable ources, Sustaina on, and Sustaina s – scope and lin s – Ultrason ion, Flocculatic esting Techniqu	gal feed vs. C and In Systen ability, f ability, f mitation ic Har on and l	stocks losed s itegrate m Des and M ferment ferment rvesting Dissolv	- cultiva Systems d Bio-refi igns: Ma anagemen ation tank ach kind - c, Filtrat ed Air Fl	- Scal inery S aintain nt, Wa ss – clo Harve ion, 1 lotation	e-Up Challe Stability of L ing Product iter Manager osed bioreact esting/ dewat Flocculation n, Centrifuga	nges, arge- ivity, nent, cors – ering and	1.0
3 Extraction Methods Assisted			- Lipid Separ Extraction and Pulsed Electric and/or Cellular	ations /or Cell Field,	and Ez ular Bi , Ultra	xtractions omass, Pr sonic ,	from e-treat Cataly	Algae, Phy ment, Micro tic Method	wave s, of	0.5

	Solvent-Based Extraction of Lipids Solvent Extraction Accelerated	
	Solvent Extraction, Mixed Solvent Extraction, Supercritical Fluid	
	Extraction, Switchable Solvents, Comparison of Extraction Methods,	
	Lipid Extraction Challenges, Presence of Water Associated with the	
	Biomass, Separation of Desired Extracts from Solvent Stream	
4	Production of Biofuels from Algae through Heterotrophic Fermentation or	0.5
	by Direct Secretion, Alcohols, Alkanes, Processing of Whole Algae,	
	Pyrolysis, Gasification, Anaerobic Digestion of Whole Algae,	
	Supercritical Processing, Hydrothermal Processing, Conversion of	
	Extracted Algae, Chemical Transesterification, Direct Transesterification	
	of Lipids into Fatty Acid, Methyl Esters, Carbohydrate and Protein	
	Fermentation, Biochemical (Enzymatic) Conversion, Catalytic	
	Transesterification, Conversion to Renewable Diesel, Gasoline, and Jet	
	Fuel, Processing of Algal Residuals after Extraction	
	Total Credits of the course	3

Books for References

Compulsory Reading:

- 1. Carney, Laura T., and Todd W. Lane. 2014. "Parasites in algae mass culture." Frontiers in Microbiology 5, Article 278. doi:10.3389/fmicb.2014.00278 2. Chisti, Yusuf. 2007.
- 2. "Biodiesel from microalgae." Biotechnology Advances 25 (3): 294– 306. doi:10.1016/j. biotechadv.2007.02.001.
- 3. Bracmort, K. 2014. Algae's Potential as a Transportation Biofuel. Congressional Research Service Report 7-5700. https://www.fas.org/sgp/crs/misc/R42122.pdf
- 4. Darzins, A., P. Pienkos, and L. Edye. 2010. Current Status and Potential of Algal Biofuels Production. IEA Bioenergy Task 39. Report T39-T2.
- 5. <u>http://www.fao.org/uploads/media/1008_IEA_Bioenergy_</u> <u>Current_status_and_potential_for_algal_biofuels_production.pdf</u>

Further Reading:

- 6. H.Verachtert et al.: Ethanol production by immobilized microorganisms, 1984, Katholieke Universitiet te Leuven, p.21104 6
- 7. Blanken, W, P. R. Postma, L. de Winter, R. H. Wijffels, and M. Janssen. 2016. "Predicting microalgae growth." Algal Research 14: 28–38. doi:10.1016/j.algal.2015.12.020.
- Coons, J. E., D. M. Kalb, T. Dale, and B. L. Marrone. 2014. "Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies." Algal Research 6 (B): 250–70. doi:10.1016/j.algal.2014.08.005

Approval Date	
Version	
Approval by	
Implementation Date	

OPEN COURSES OFFERED BY SCHOOL OF BIOSCIENCES

MAHATMA GANDHI UNIVERSITY

SBS M PO 34: BIOTECHNOLOGY AND SOCIETY

SchoolName	School of Biosciences					
Programme	MSc/ MA/ MBA (offered for schools other than School of Biosciences)					
Course Name		Biot	technolo	gy and S	ociety	
Type of Course	Open					
Course Code	SBS M PO 34					
Names of Academic Staff & Qualifications Course Summary & Justification	 Dr Jayachandran K and Dr.Linu Mathew 1. This course is meant for PG students of MG University other than the students of School of Biosciences. 2. The course deals with the applications of Biotechnology in a societal perspective; the learner has a previous knowledge about biotechnology through mass media and their secondary school education 3. n this course they will develop a scientific understanding about 					
Semester	biotechnology a		Third	.5 110 500	lety	
			0			
Total StudentLearning Time (SLT)	Learning Approach Lecture Tutoria l Practic al Others Total LearningHou rs					
	Authentic learning8020040140Collaborative learningIndependent learningIndependent learningIndependent learningIndependent learning					
Pre-requisite	None					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	scribe the applications of Biotechnology in a societal perspective	E	
2	itically evaluate the benefits of biotechnology to society	U/ An	
3	alyse the ethical and social issues related to	An	

	biotechnology and intellectual property		
4	mmunicate effectively about a given topic in biotechnology and society both verbally and in	An/ C	
	writing nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea reciation (Ap)	te (C), Skill (S),	Interest (I)

Mod ule			Hrs	
No				
1	Introduction to biotechnology: Biotechnology – a boon or a bane, Biotechnology- an interdisciplinary pursuit, public perception of biotechnology, biotechnology and the developing world, biotechnology – Indian scenario	0.5	10	
2	Industrial and environmental biotechnology: Bioprocess and fermentation technology, enzyme technology; food and beverage biotechnology; biological fuel generation and single cell protein, GM food and controversies associated, Biosensors and biochips, Biotechnology for profit making	1	20	
3.	Genetics and biotechnology: Protoplast and cell fusion techniques, genetic engineering, whole genome sequencing, Animal cloning - ethics and applications, genetic engineering - social, moral and ethical considerations, mitochondrial evolution – tracing your routes, DNA Fingerprinting - concept and applications	1.0	20	
4	Biotechnology in agriculture and medicine: Creation and applications of transgenic animals and plants, applications of plant and animal cell culture; gene therapy- techniques and applications	0.75	15	
5	Protection and safety of biotechnological inventions: Patents trade secrets and plant breeders' rights, biological and physical containment, and problems of organism pathogenesis and biologically active biotechnology products, Bioterrorism, Biopiracy	0.75	15	
	Total Credits of the Course	4		

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, nteractive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment Types	Mode of Assessment Z. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be				

	 discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search - 10 marks
AA.	Semester End examination – 60 marks

REFERENCES

Compulsory Reading:

- 1. Biotechnology, John E Smith, Cambridge low price editions; Cambridge University press ISBN 0-521-58694
- An introduction to genetic engineering, Desmond. T. Nicholl. Cambridge University press ISBN 81-7596-101-5

Further Reading:

- 1. Gene cloning and DNA analysis an introduction, T A Brown, Blackwell science publishers ISBN 0-632-05901-X
- 2. Molecular biotechnology, Principles and Applications of Recombinant DNA, Glick Pasternakand Patten, 4th edition ISBN 978-1-55581-498-4 Wiley International Publishers

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
IZ. AOTTAVAN	SBS M PO 35: MICROBIOLOGY IN EVERYDAY LIFE
/विद्यया अमृतमइन्त	

SchoolName	School of Biosciences
Programme	M.Sc./M.A. in any subject
Course Name	MICROBIOLOGY IN EVERYDAY LIFE
Type of Course	Open Course
Course Code	SBS M PO 35

Names of	Dr Dadhalzrighnen E.V.	MSa	որ ու]	
	Dr.Radhakrishnan E.K	. IVI.SC.,	FII.D				
Academic Staff							
& Qualifications							
Course	Microorganisms have	importa	nt role to	o suppor	t the hu	man life. The	
Summary & Justification	syllabus content in thi	syllabus content in this course has been designed with an objective to					
	provide overall ur	nderstand	ing on	impor	tance o	of beneficial	
	microorganisms and	the cha	llenges	with mi	crobial	pathogens to	
	humans. This will en	able the	students	to ident	ify the i	importance of	
	microorganisms. Wit	th the e	emerging	health	challen	ges a better	
	understanding on mic	roorganis	sms will	be highly	benefic	cial for the	
	students.						
Semester			Third				
Total Student							
Learning	Learning Approach	Lectur	Tutori	Practi	Other	Total	
Time (SLT)	0 11	e	al	cal	S	LearningHo	
						urs	
	Authentic learning	80	20	0	40	140	
	Collaborative						
	learning						
	Independent learning						
Pre-requisite	Basic interest in microbiology, understanding on importance of						
	microorganisms and its relation with humans						

COURSE OUTCOMES (CO)

0000	SE OUTCOMES (CO)				
CO No.	Expected Course Outcome	Learning Domains	PSO No.		
1.	Students will able to understand the importance of microbiology in various processes of daily life	R/U/I			
	incrobiblogy in various processes of dairy me				
2.	Students will able to understand the methods to study	R/U			
	microorganisms				
3.	Students will get exposed to the techniques used in	U/ E			
	microbiology				
4.	Students will able to explain the role of microorganisms	U/An/A			
	in relation to health and disease				
5.	Students will able to understand disease progression and	C/S			
	mechanisms involved				

6.	Students will able to apply the knowledge to for better	A/S	
	management of microorganisms for healthy life		
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluat erest (I) and Appreciation (Ap)	te (E), Create	(C), Skill

Modu	Module Content	Cre	Hr
le No		dits	s
1	History and Developments in Microbiology: Prokaryotic and	1.0	20
	eukaryotic cell, Contributions from Leuwenhoek, Louis Pasteur, and		
	Robert Koch. Microbiome, An overview of microorganisms, the		
	bacteria and the archea. General characteristics, morphology, Structure		
	of bacteria. Virion, viroids and prions, Eukaryotic Microorganisms., A		
	brief introduction to microscopy, Staining of bacteria and fungi,		
	Cultivation of bacteria and fungi, culture media and methods		
2	Methods to control Microorganisms: Disinfection, Sterilization,	1.0	20
	Sterilizing Agents, Antibiotics, Antibiotic Sensitivity tests, Antibiotic		
	Resistance		
3.	Microbes in relation to health and disease: Human microbiome,	1.0	20
	Infection, source of infection, method, of transmission, Immunity,		
	Innate and adaptive immunity, Microorganisms involved in respiratory		
	tract infection, Meningitis, Urinary tract infection, STD, Skin		
	infection, Nosocomial infection, Tuberculosis, Typhoid fever,		
	Dengue, AIDS, Hepatitis, Ebola and COVID-19		
4	Microbes in relation to food: Microorganisms in preparation of food	1.0	20
	materials, lactic acid bacteria, role of microorganisms in preparation		
	of curd, cheese and cultured dairy products, probiotics, and their		
	importance, single cell protein, Microorganisms responsible for food		
	borne infection and intoxication. Water borne diseases- prevention and		
	control Fermented food, milk and milk products, role of food		
	preservative		
	Industrially important microbial products: Role of Microorganisms		
	in 74 production of bread and beer. Microbial enzymes and their uses-		

detergent, enzymes, therapeutic enzyme Streptokinase		
 Total Credits	4	
Total Credits	4	

Teach ing	Classroom Procedure (Mode of transaction)
And	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
Learn	interactive Instruction, Active co-operative learning, Seminar, Group Assignments
ing Appro	Authentic learning, Library work and Group discussion, Presentation by individual
ach	student/ Group representative
Assess ment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	1. Internal Tests of maximum 20 marks
	2. Seminar Presentation – a theme is to be discussed and
	identified to prepare a paper and present in the seminar -
	Maximum marks 10
	3. Write a detailed report on a given topic based on research
	findings and literature search – 10 marks
	B. Semester End examination – 60 marks

REFERENCES

Compulsory Reading:

1. Microbiology. Prescott, Harley and Klein wim C Brown publishers, 2014

2. Brock Biology of Microorganisms, Michael T. Madigan, John M. Martinko, David A. Stahl David P. Clark 14th adition. 2015.

Stahl, David P. Clark, 14th edition, 2015

Further Reading:

3. Principles and practice of disinfection, preservation and sterilization – Russel AD et al., Blackwell Scientific Publications, 2013

4.Microbiology Concepts and Applications. Pelczar Jr Chan. Creig. McGraw Hill Inc, 5 th edition, 2001 5.

5. Topley and wilson's Principles of Bacteriology, Virology and Immunology - Arnold -

Heinemann, 1990		
Tememann, 1990		

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M PO 36 : ENVIRONMENT LEAD AUDITOR COURSE

School Name	School of Biosc	School of Biosciences				
Programme	III SEM Open Course					
Course Name	ENVIRONMENT LEA	AD AUD	ITOR CC	URSE		
Type of Course	Open					
Course Code	SBS M PO 36					
Names of Academic Staff & Qualifications	Dr J G RAY					
Course Summary & Justification	This course provides postgraduates with a thorough understanding of the basic principles of ecology and environment and introduces the basic concept of ecological objects – population, community, and ecosystem- and then explain the details of the environmental auditing process. The course will equip them as environment auditors - 'Lead Auditor' as per ISO 14001 Standards. Environmental auditing is an essential process of all institutions and industrial processes to achieve sustainability in their activities, process, production and practice. It is an emerging career as well.					
Semester			Third			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours

	Eg: Authentic learning Collaborative learning Independent learning	80	18	0	30	128
Pre-requisite	Students of arts/scienc	e/manag	ement/con	nmerce at	Gradua	te level

0.	Expected Course Outcome	Learnin	PSO No.
		g Domain s	
1	Upon completing this course, students will develop a critical knowledge of the basic principles of ecology and the environment.	R/U/A	
2	They will be able to analyse environmental issues from a social perspective.	U/A	
3	They will acquire the basic skills of environmental auditing. They will develop the skills of a lead auditor	U/An/A p	
4	They will develop the skills of an Environment lead auditor of ISO-14000 standard as per the British Standard Institution requirements	An/Ap	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

	-			
modul	Module content	Credits	hrs	
e No		offered		
1	Introduction to Ecology and Environment science: the concept of the environment; Life as a system phenomenon- hierarchy in the system of life; Ecological objects- population, community and ecosystem; Ecology of humans, Concept of sustainable environmental quality. Environment Pollution – definition and classification; Water pollution – water quality parameters and standards, control of water pollution, wastewater treatments; Air pollution – primary and secondary pollutions, air pollution monitoring and control; Land pollution – solid waste management, recycling, reuse and	1.0	20	
	recovery, problems of plastic waste			
2	Natural Resources and Biodiversity Conservation: classification of resources, resource depletion, preservation, conservation and restoration of resources; Concept of biodiversity – genetic, species	0.5	10	

3	 and ecosystem diversities, principles of biodiversity conservation, ex-situ and in-situ conservations; IUCN accounting of biodiversity – hot spots, red data book; Global environmental crisis - UNEP, UNFCC, One earth programme, globally crucial agricultural heritage (GIAH) Legal methods to sustain environment quality: environment laws – national and international environmental laws; Montreal protocol and its amendments, Kyoto protocol, constitutional provisions of environment quality in India, major environmental laws of India, environment protection act of 1986, National environment policy; Environment Impact Assessment 	0.5	10
4	Environment Audit: definition, types of audit, objectives of environmental audit, benefits of ecological audit, basic environment management philosophy, critical steps to environment audit – pre- audit, onsite audit and post-audit, step by step approach of auditing, action plan, auditor requirements; Environment Management Systems: ISO-14000-2004, model for this international standard, different clauses in ISO 14000 standard – scope, normative references, terms and definitions, EMS requirements – clauses 4.1 to 4.6 Total Credits of the course	2.0	40
	Books for References		
1. 2. 3.	Appulsory Reading: Ray J G (2010) Basic Principles of Ecology and Environ Prathibha Publications, Kerala,India Mehrotra A et al. (2001) A to Z of Environmental Audi Publ. New Delhi Dash M C (1993) Fundamentals of Ecology, Tata McG Publ. Co. New Delhi	it,SOFEM	
4. 5. 6. 7.	ther Reading: Singer FD (2016) Ecology in Action, Cambridge Universit Chapman JL and Reiss MJ (1998) Ecological Principles Applications, Cambridge University Press, London Trivedi RK (Ed) International Encyclopaedia of Ecolog Environment (Volumes 1-30), IIE, New Delhi 7. Ramade F (1981) Ecology of Natural Resources, John V Sons, New York	and y and	

MAHATMA GANDHI UNIVERSITY

SBS M PO 37 : SYSTEM BIOLOGY

SchoolName	School of Biosciences					
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics					
Course Name	SYSTEM BIOLOGY					
Type of Course	Open course					
Course Code	SBS M PO 37					
Names of Academic Staff & Qualifications	Dr. R. Harikumaran MSc, PhD	Dr. R. Harikumaran Nair MSc, PhD				
Course Summary & Justification	is course is designed to provide an overview of human physiology. urse topics will include the various systems of the body, functions of each system, and interrelationships to maintain the internal environment. The course also provides inputs to physiological stress and adaptive strategies to overcome stress					
Semester			Third			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutoria 1	Practic al	Others	Total LearningHou rs
	Authentic learning Collaborative learning Independent learning	80	20	0	40	140
Pre-requisite	Basics Knowledge in	n Biology	7		1	1

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Idents should be capable of effectively communicating how the human body works	U	
2	idents should describe the interdependency and interactions of the systems	А	

3	students should be able to explain contributions of organs and systems to the maintenance of homeostasis	E	
4	The content of the course will elicit curiosity in functioning of human body	Ι	
	ber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea reciation (Ap)	ute (C), Skill (S),	Interest (I)

Mod ule	Module Content	Credits	Hrs
No			
1	Body organization, cells, tissues, organ and organ systems, body fluid compartments, reflex, biological rhythms	0.25	5
2	Cell membrane, cell organelles, movement of molecules across cell membranes, diffusion, osmosis, endocytosis, exocytosis	0.25	5
3.	Neuron, basic principles of electricity, neuronal potentials, neuronal communications, brain, spinal cord, different nervous systems, somatic sensation, vision, hearing, chemical sense, motivation, emotion, learning, memory	0.5	10
4	Muscles, muscle contraction, body movement, hormones, hormone disorders, heart, cardiac functions, blood, hypertension, respiration, gas transport between lungs and tissues, respiratory problems	1.5	30
5	Kidney, dialysis, digestion and absorption of food, diabetes mellitus, increased plasma cholesterol, body temperature, gametogenesis, male and female reproductive functions	1.5	30
	Total Credits of the Course	4	80

Teachingand LearningApp	Classroom Procedure (Mode of transaction)
roach	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative

Assessment Types	Mode of A	Mode of Assessment						
	BB.	Continuous Internal Assessment (CIA)						
		1. Internal Tests of maximum 20 marks						
		2. Seminar Presentation – a theme is to be						
		discussed and identified to prepare a paper and present in the seminar Maximum marks 10						
		3. Write a detailed report on a given topic based on research findings and literature search – 10						
		marks						
	CC.	Semester End examination – 60 marks						

REFERENCES

Compulsory Reading

- 1. Systems Biology: Definitions and Perspectives. Alberghina, L. and Westerhoff, H,
- 2. Essentials of Medical Physiology. K Sembulingam&PremaSembulingam
- 3.Biochemistry and Physiology of the cell. An introductory text second edition- Edwards, N. A Hassall, K.A

Further Reading:

1.Vander's Human Physiology- The mechanism of body function. Widmaier, Raff & Strang 2.Textbook of Medical Physiology. Arthur.C. Guyton&John.E. Hall

3. Physiological basis of Medical Practice. John.B. West

4. Human Physiology: an integrated approach- Silverthorn, Dee Unglaub

5. Principles of anatomy and physiology- Tortora, Gerald J Derrickson, Bryan

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M PO 38 : SUSTAINABLE AGRICULTURE

Scho	ool Name	School of Bi	oscien	ces					
Progra	amme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics							
Course	e Name	SUSTAINABLE A	STAINABLE AGRICULTURE						
Type of	of Course	Open course							
Cours	e Code	SBS M PO 38							
	s of Academic & Qualifications	Dr J G RAY							
Course Justifi	e Summary & cation	The course is to introduce the concept of sustainable agriculture, especially its principles of ecological sustainability. The course will equip students to understand the concept of organic farming. It will enable an understanding of plant nutrient management as well as pest management in sustainable agriculture. Organic farming is becoming an internationally significant agricultural practice, and the knowledge has global significance. Interdisciplinary biology students with a good understanding of organic farming will enable our students to find suitable job opportunities in such farming industries.							
Semes	ter		Third						
Total S Time (Student Learning (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total L Ho	•	
		E.g., Authentic learning Collaborative learning Independent learning	60	18	0	28	10)6	
Pre-re	equisite	None	1		1		1		
No.	E	Expected Course Ou	xpected Course Outcome Lea Dor				PSO No.		
1		elop a critical knowledge of the basic R/U/A ainable agriculture							
2	They will be able chemicalized agri		analyze environmental issues related to U/A						

3	They will acquire the basic skills of sustainable organic agriculture	U/An/Ap		
4	They will develop the skills to evaluate different kinds of farming	An/Ap		
	ber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), reciation (Ap)	Skill (S), Inter	est (I)	
Modul e No	Module content		Credits offered	Hrs
1	Introduction to Sustainable agriculture: Concept of sustainability and sustainable agriculture-Natural, Ecological a farming – definition, concepts, and practices – management, methods, merits and demerits.	and organic	1.0	20
2	Challenges to Sustainable agriculture – Productivity vs sustaina organic matterdecomposition, C: N ratios, mineraliza immobilization processes, hummus, the role of organic mat quality – natural way to prevent soil degradation and erosion control measures. Soil related water pollution- sources, pollutants in soils and their managements Plant nutrient management in sustainable agriculture: Bio-ava nutrients in soils, deficiency symptoms on plants, nutrient inter chelated micronutrients.Bio-fertilizers – benefits - classificat production - maintenance and application	ation and tter in soil , types and different hilability of actions and ions,	1.0	20
3	Organic Manures – bulky and concentrated – FYM – Bioc Compost – rural, urban, vermicompost and coirpith; Pa preparation and other organic nutrients application - Enri organic manures; Sewage and sludge; Green manures – pot limitations; Quality parameters of organic manures and speci Biofertilizers -	anchagavya ichment of entials and	1.0	20
4	Biopesticides and biological control agents: Types of agentsbiological agents and pheromones, control of weeds, di insect pests and field sanitation - competition, predation, ant fungistatic Efficacy of traditional biopesticides - Botanical insecticides- insects like the honeybee, lac insect, silkworm and pollinators Biological control - concepts and potentialities for managing pathogens. Types of biological interactions, competition, 1.078 myco Mycorrhizal associations, Biodynamic products, Biodynamic composting, Liquid manure of Bio-dynamic products on crop production. Visit Organic Far	iseases and ibiosis and beneficial soil-borne parasitism; e, Influence ms		20
	Total Credits of	f the course	4	
	Books for References			
1. Dal	Ilsory Reading: hama AK (2007). Organic Farming for Sustainable Agriculture AGROBIOS (India) Jodhpur tional Standards Programme for Organic Production and Orga			

Department of Commerce, Ministry of Commerce and Industry, Govt. of India

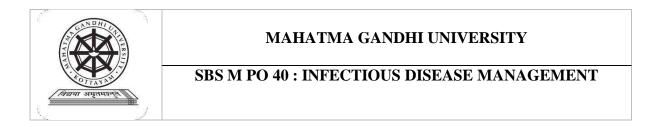
Further Reading:

- 3. Gehlot D (2005). Organic Farming: Standards, Accreditation, Certification and Inspection, AGROBIOS (India) Jodhpur
- 4. Gupta PK (2007). Soil, Plant, Water and Fertilizer Analysis Published by AGROBIOS (India), Jodhpur
- 5. Sadasivam S and Manickam A (1992). Biochemical Methods for Agricultural Sciences Wiley Eastern Limited and Tamil Nadu Agricultural University, Coimbatore

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M PO 39: ECOLOGY AND SOIL FERTILITY


School Name	School of Biose	ciences	5			
Programme	III Sem Open Course					
Course Name	Ecology of Soil Fertility					
Type of Course	Open					
Course Code	SBS M PO 39					
Names of Academic Staff & Qualifications	Dr J G RAY, Ph D in Soil Ecology					
Course Summary & Justification	The course is designed to help postgraduates of both arts and science know what soils are and how they form and sustain them. The course will help them understand the nature and importance of soil fertilityand its natural biological maintenance. They will also know the role and importance of soil biodiversity in soil fertility and its sustenance. Since farming has become an important activity to ensure ecosystem sustainability, it has become imperative for every educated person to understand the scientific principles of soil fertility and its natural maintenance. Organic farming is also becoming an essential career for educated youth.					
Semester			Third			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	E.g., Authentic learning Collaborative learning Independent learning	80	18	0	30	128
Pre-requisite	Knowledge in Botany	at the Gr	aduate le	vel	1	L
No.	Expect	ed Cours	e Outcom	P		

1	Students will develop a critical knowledge of the concept of soil fertility	
2	They will be able to understand the vitalnatural components of soil fertility	
3	They will learn to account for various soil biodiversity components and their significance	
4	They will know sustainable management of soil fertility	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module No	Module content	Credits offered	
1	Concept of soils – soil and parent materials– soil formation – role of climate and vegetation in soil formation – soil profile, soil taxonomy; water relations of soils – hygroscopic, capillary and field water content – run-off water – factors affecting percolation	1.0	20
2	Soil Physics and Chemistry; soil physical properties - colour and texture, soil structure - aggregate formation, aggregate stability, capillarity, porosity; Soil chemistry, pH, carbon in soils –humus – its chemistry and role in soil, exchangeable and soluble cations and anions in soils soil as a buffer system; soil amendments – problems of tillage – problems of irrigation – problems of chemical fertilizers and liming	1.0	20
3	Soil biology – the role of soil biota – soil fauna and flora - soil ecological processes and microbial function - decomposition - introduction, overview, fragmentation, factors controlling decomposition, carbon, nitrogen and phosphorus cycles in soils, transformations of nitrogen nitrification-immobilization-volatilization, denitrification, soil ecosystem management and soil biota	1.0	20
4	Agriculture – traditional versus modern – problems of chemicalized agriculturecontrol of soil degradation - desertificatication of soils – soil reclamation – soil conservation –prevention of soil erosion - mulching, contour bunds – sustainable soil fertility - ecology of soil fertility – principles of ecological and organic farming - climate change, global warming and soil ecology	1.0	20
	Total Credits of the course	4	
<u> </u>	Books for References		
8. Nyle (Ory Reading: C Brady (1984) Nature and properties of Soil, Mc Milan Publishers G (2010) Basic Principles of Ecology and Environment, PrathibhaPubl	i., Kerala,	
11. Christ	Reading: In DC et al. (2003) Fundamentals of soil ecology, Elsevier ian Ditchfield (2003) Soils, Children's Press, Dublin BN (2003) The world beneath our feet: A guide to life in the soil, Oxford	University	

Approval Date	
Version	
Approval by	
Implementation Date	

SchoolName	School of Biosciences				
Programme	M.Sc./M.A. in any subject				
Course Name	INFECTIOUS DISEASE MANAGEMENT				
Type of Course	Open Course				
Course Code	SBS M PO 40				
Names of Academic Staff & Qualifications	Dr.Radhakrishnan E.K. M.Sc.,Ph.D				
Course Summary & Justification	Infectious diseases cause significant threat to the existence of humans. The syllabus of this course has been designed to introduce the importance and relevance of infectious diseases. This also include the mode of transmission of various infectious diseases and the diagnostic methods used for various infectious diseases This will enable the students to identify the importance of infectious diseases and the microbial basis of the same. With the emerging health challenges a better understanding on infectious diseases will be highly beneficial for the students.				

Semester	Third					
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutori al	Practi cal	Other s	Total LearningHo urs
	Authentic learning Collaborative learning Independent learning	80	20	0	40	140
Pre-requisite	Basic interest in infectious diseases and microbiology					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1.	Students will able to understand the importance of infectious diseases	R/U	
2.	Students will able to understand the types of organisms causing infectious diseases	R/I/ U	
3.	Students will learn the mode of transmission of infectious diseases	U/ E	
4.	Students will able to explain the infectious diseases and its basis	U/I/A	
5.	Students will able to understand diagnosis of infectious diseases	C/S	
6.	Students will able to apply the knowledge on infectious diseases for better its management	S/C	
	mber (R), Understand (U), Apply (A), Analyse (An), Evalua terest (I) and Appreciation (Ap)	te (E), Create	(C), Skill

Modu	Module Content	Cre	Hr
le No		dits	S
1	Infectious disease, etiological agents-bacteria, fungi, viruses, prions,	1.0	20
	protozoan. Special focus on COVID-19, Reservoir- human,		
	environment. Carriers- incubatory, inapparent infection, convalescent		
	and chronic carrriers. Mode of transmission- direct and indirect. Portal		
	of entry- respiratory, genitourinary, alimentary, skin and transplacental		

2	Infectious disease- acute respiratory infections, diarrheal diseases,	1	20
	hepatitis, HIV, tuberculosis, sexually transmitted diseases, malaria,		
	and other vector-borne diseases		
3.	Lab diagnosis of infectious disease, sample collection, sample	1	20
	processing microscopy, culture, immunological methods, nucleic acid		
	based identification methods and non-nucleic acid based identification		
	methods		
4	Infectious disease management, treatment, antibiotics- types of	1.0	20
	antibiotics, mode of action, antibiotic resistance, antiviral, antifungal, and		
	antibacterial agents, immunization and infectious diseases, vaccination		
	against major infectious diseases, types of vaccines		
	Total Credits	4	

Teach ing	Classroom Procedure (Mode of transaction)			
And	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,			
Learn ing	interactive Instruction, Active co-operative learning, Seminar, Group Assignments			
Appro	Authentic learning, Library work and Group discussion, Presentation by individual			
ach	student/ Group representative			
Assess	Mode of Assessment			
ment Types	A. Continuous Internal Assessment (CIA)			
	1. Internal Tests of maximum 20 marks			
	2. Seminar Presentation – a theme is to be discussed and			
	identified to prepare a paper and present in the seminar -			
	Maximum marks 10			
	3. Write a detailed report on a given topic based on research			
	findings and literature search -10 marks			
	B. Semester End examination – 60 marks			

REFERENCES

1. Bailey and Scott's Diagnostic Microbiology Publisher: Elsevier Health, 28 Jun 2013

2. CURRENT Diagnosis & Treatment in Infectious Diseases, Walter R. Wilson and Merle

A. Sande 3. Fundamentals of Molecular Diagnostics (1st Edition) By David Bruns Edward Ashwood Carl Burtis : Elsevier. 2007

Further Reading:

3. Textbook of Diagnostic Microbiology Hardcover, by Mahon (Author), Publisher:

Elsevier Health - US; 5 edition (18 February 2014)

4. Koneman'sColor Atlas and Textbook of Diagnostic Microbiology 7th Edition by Gary

W. Procop MD MS, Elmer W. Koneman, Publisher: LWW; 7 edition (June 15, 2016).

5. Advanced techniques in Diagnostic microbiology. Yi-wei Ting, Charles W. Stratton: Springer

7. Sherris Medical Microbiology (5th edition) by Kenneth J. Ryan, C. George Ray

5. Infectious Disease: Pathogenesis, Prevention and Case Studies By Nandini Shetty, Julian

W Tang, Julie. Wiley- Blackwell (April, 2009).

Approval Date	
Version	
Approval by	
Implementation Date	

Parren argenerge	MAHATMA GANDHI UNIVERSITY SBS M PO 41: PROBIOTICS AND NUTRACEUTICALS
School Name	School of Biosciences
Programme	MSc/ MA/ MBA (offered for schools other than School of Biosciences)
Course Name	Probiotics& Nutraceuticals
Type of Course	Open Course
Course Code	SBS M PO 41
Names of Academic Staff & Qualifications	Dr.Keerthi TR

Course Summary & Justification	 The cover concept of nutraceuticals/functional food - extra health benefits in addition to the basic nutritional value of food. Enable students to recognize the link between nutrition, health and diseases Identify major types of health foods and nutraceutical products in the market. Role of Probiotics & Prebiotics to maintain health. Students get exposure towards the market opportunity of nutraceuticals and the nutraceutical industry 					
Semester	Third					
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutoria l	Practic al	Others	Total LearningHou rs
	Authentic learning Collaborative learning Independent learning	80	20	0	40	140
Pre-requisites	Basics of Health and Nutrition.					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	On completing this course, the student will be able to Explain the classification and types of nutraceuticals/functional foods. Describe the role of nutraceuticals in lifestyle diseases.	U/E	
2.	Describe the nutraceuticals from plant origin including algal nutraceuticals & their health benefits.	U/R	
3.	Explain various nutraceuticals of animal origin & their therapeutic applications.	An/U	
4.	Illustrate the health benefits & mechanism of probiotics & prebiotics. Describe the various probiotics & prebiotics available in the market & their production & specific applications	U/A	
5.	Communicate effectively about a chosen topic in Probiotics & Nutraceuticals both verbally and orally	An/A	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT				
Module	Module Content	Credits	Hrs	
No				
1	Concept of Functional Foods/Nutraceuticals: Definition and	1.0	20	
	classification of nutraceuticals, dietary supplements, fortified			
	foods, functional foods and Phyto- nutraceuticals. Scope			
	involved in the industry, Indian and global scenario. Relation of			
	functional foods/ Nutraceutical (FFN) to foods & drugs.			
	Applications of herbs to functional foods. Concept of free			

Total	Credits of the Course	4	
	good health. Market opportunities of nutraceuticals		
	other health benefits .Other biotic approaches for maintaining		
	& use of prebiotics in maintaining the useful microflora &		
	&applications - examples of bacteria used as probiotics, Types		
	involveddifferent forms available in the market. Benefits		
	principle, mechanism, production and technology		
4	Probiotic & Prebiotic: Concept of prebiotics and probiotics -	1.0	20
	sea foods		
	applications in preventive medicine and treatment. fish oils, and		
	and other polysaccharides of animal origin, uses and		
	Examples: chitin, chitosan, glucosamine, chondroitin sulphate		
J.	Sources and extraction of nutraceuticals of animal origin.	1.0	20
3.	Nutraceuticals of animal origin: Animal metabolites -	1.0	20
	Algae as source of omega - 3 fatty acids, antioxidants and minerals - extraction and enrichment		
	Algal nutraceuticals: Micro & macro algae as nutraceuticals.		
	beans, Capsicum annum, mustards, , garlic, grape, citrus fruits.		
	dairy products as Functional foods. Health effects of common		
	lecithin, choline. terpenoids. Vegetables, Cereals, milk and		
	Tocotrienols, polyunsaturated fatty acids, sphingolipids,		
	Isoprenoids, Isoflavones, Flavonoids, carotenoids,		
	Vegetables and their Health Benefits; Sources and role of		
2.	Nutraceuticals of plant origin: Nutraceuticals in Fruits and	1.0	20
	prevention and treatment of cancer, obesity and stress		
	of antioxidants - use of antioxidants as dietary supplements in		
	in the prevention and treatment with special reference to diabetes mellitus, hypertension, hypercholesterolemia. Concept		
	components with potential health effects. Role of nutraceuticals		
	radicals and antioxidants; Nutritive and Non-nutritive food		

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	 Mode of Assessment DD. Continuous Internal Assessment (CIA) Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks EE.Semester End examination – 60 marks

REFERENCES

Compulsory Reading:

- 1. Shi, J. Asian Functional Foods CRC Press 2005
- 2. Webb, G.P. Dietary Supplement and Functional Foods Blackwell 2006.
- 3. Shibamoto T. Functional food and health, Oxford University Press, 2008

Further Reading:

- 1. Shi, J. Functional Food Ingredients and Nutraceuticals: Processing Technologies CRC Press 2007
- 2. Bagchi D. Nutraceutical and functional food regulations in the United States
- 3. and around the world, Elsevier/Academic Press, 2008.
- 4. Guo M. Functional foods: principles and technology, CRC Press, 2009.
- 5. J.Paulo Sousa e Silva., Ana.C.Freiles.Probiotic Bacteria .Pan slanford publishing Pte.Ltd
- 6. FaizelBux. Biotechnological Application of Microalgae.CRC Press.
- 7. Wayne.RBidlack.,Roymond L Rodringuez.NutritionalGenomics.CRC Press.
- 8. Frances Sizer., Elecener Whitney Nutrition concept and contraversesisWordswerth Publishers.
- 9. Thomas J Mont Ville., Kart R Matthews 7 Kalmia E Kniel Food Microbiology, ASM Press.

Approval Date	
Version	
Approval by	
Implementation Date	

FOURTH SEMESTER

MAHATMA GANDHI UNIVERSITY

SBS M P C 47: PLANT BIOCHEMISTRY

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry					
Course Name	PLANT BIOCHEMISTRY					
Type of Course	Core					
Course Code	SBS M P C 4	7				
Course Summary & Justification Semester	The course is designed to give a brief understanding of the fundamentals of plant biochemistry with a view to provide key knowledge about the plant biochemical processes.					
		1			,	
Total StudentLearningTime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHours
	Eg. Authentic learning Collaborative learning Independent learning	80	20	0	40	140
Pre-requisite	Basic underst	anding o	f biocher	nical proc	esses	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	1. To demonstrate the organization and importance of photosynthetic mechanisms in plant and to contrast the different mechanisms of carbon fixation in the plant kingdom.	А	
2	2. To identify the metabolic and hormonal responses in plants.	U	

3	3. To identify the class and functions of secondary	U	
	metabolites.		
	4. To inspect the stress and defense mechanisms in	А	
	plants		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)		

Module	Module Content	Credits	Hours
No			
1	Photosynthesis: Photosynthetic apparatus, pigments of photosynthesis, role of carotenoids, photosystems I and II, <i>light harvesting antenna complex</i> photosynthetic electron transport and generation of NADPH & ATP, cyclic and non-cyclic photophosphorylations, complexes associated with thylakoid membranes. Calvin cycle: Biochemistry of RuBP carboxylase/oxygenase, activation of RUBISCO, oxygenation reaction, stereochemistry of RUBISCO, Hatch and slack pathway, CAM plants; productivity of C4 plants, photorespiration and compensation point, photosynthetic efficiency and plant productivity.	1	20
2	Nitrogen metabolism: Importance of nitrogen in biological systems, nitrogen cycle. Nitrogen fixation- symbiotic and non- symbiotic, nitrogenase complex, electron transport and mechanism of action of nitrogenase. energetics and regulation of nitrogen fixation. Biochemical and physiological role of hydrogenase. Assimilation of nitrate and ammonium ion. Plant growth regulators:Structure, functions synthesis and modes of action of plant hormones - ethylene, cytokininins, auxins (indole acetic acid), absicic acid, florigin and gibberellins. Compounds that inhibit phytohormones.	1	20
3.	 Plant stress physiology: Plant stress, plant responses to abiotic and biotic stresses, salinity, water, heat, chilling, anaerobiosis, heavy metals, radiations and their impact on plant growth and metabolism, mechanisms of resistance to biotic stress and abiotic stress, anti oxidative defense mechanism. Plant defense: Genetic basis of plant-pathogen interactions, antio R-Avr gene interactions and isolation of R genes, hypersensitive response (HR), systemic acquired resistance (SAR) and induced systemic resistance (ISR). Senescence: various levels of senescence, Mechanism of 	1	20

	different biochemical changes during senescence.		
4	Major chemical classes of secondary metabolites: A brief	0.5	10
	account of the following classes: Alkaloids, terpenoids,		
	flavonoids, phenolics and phenolic acids, steroids, coumarins,		
	quinines, acetylenes, cyanogenic glycosides, amines and non-		
	protein amino acids, gums, mucilages, resins etc. (Structures		
	not necessary. Give examples of the compounds and the plants		
	in which present and their importance). Importance of		
	secondary metabolites.		
5	General biosynthetic pathways of the following classes of	0.5	10
	secondary metabolites (structures of intermediates not		
	necessary): Terpenoids: Isoprene as precurosor, hemi, mono,		
	sesqui, di, triperenes and polyterpenes with examples and		
	important members; their functions. Phenols: simple phenols,		
	phenol carboxylic acids, phenylpropanes, flavan derivatives,		
	and phenolic glycosides. Broad outline of their biosynthesis		
	and functions in plants and uses. Alkaloids: Definition of true		
	and pseudo alkaloids; phenylethylamines, pyrrolidone		
	alkaloids, piperidine alkaloids, pyridine alkaloids, tropane		
	alkaloids, quinoline and isoquinoline alkaloids, indole		
	alkaloids, purine alkaloids, isoprenoid alkaloids, steroidal alkaloids.		
	Total Credits of the Course	4	80
	Books for Reference		
Compu	Ilsory Reading:		
-	t Metabolism by H.D. Kumar and H.N. Singh (1980) Publisher:	Macmi	llan (Ma
1980) IS	SBN-10: 0333256387 ISBN-13: 978-0333256381		
2. Biot	echnology: Secondary Metabolites by K.G. Ramawat, (2000) Public	sher: Sc	ience
Publish	ers,U.S. ISBN-10: 1578080576 ISBN-13: 978-1578080571		
Furthe	r Reading:		
	Biochemistry by P. M. Dey and J. B. Harborne (Editors) (1997) Pu	blisher:	Academi
	SBN-10: 0122146743, ISBN-13: 978-0122146749		
	Metabolism by Prof David T. Dennis, Prof David H. Turpin, Dr D	aniel D.	Lefebvi
	David B. Layzell (Editors) (1997) Publisher: Longman; ISBN-10: 0		
	-582259065		
5 Plant	Biochemistry by Hans-Walter Heldt Professor Em (3ed 2004) Pu	blisher:	Academi

5. Plant Biochemistry by Hans-Walter Heldt Professor Em (3ed 2004) Publisher: Academic ISBN-10: 0120883910 ISBN-13: 978-0120883912

6. The Principles of Plant Biochemistry by Murield Wheldale Onslow (1931) Publisher: Cambridge University Press ASIN: B002BJMX1M

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative	
Assessment Types	Mode of Assessment C. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks D. Semester End examination – 60 marks	

Approval Date	
Version	
Approval by	
Implementation Date	

MAHATMA GANDHI UNIVERSITY

SBS M P C 48: LAB COURSE 7 BIOCHEMISTRY

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry					
Course Name	LAB COURS	LAB COURSE 7 BIOCHEMISTRY				
Type of Course	Core					
Course Code	SBS M P C 4	18				
Course Summary & Justification	The course is designed to develop in students the essential skills to perform biochemical analysis in plants. This will enhance the practical abilities of the students to perform the plant-based analyses and techniques.					
Semester	Fourth					
Total StudentLearningTime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHours
	Eg. Authentic learning Collaborative learning Independent learning	10	10	210		230
Pre-requisite	Basic underst reagents and s	0	f biocher	nical proc	cesses,	General idea on

COURSE OUTCOMES (CO)

CO No.	Excted Course Outcome	Learning Domains	PSO No.
1	To establish the preliminary screening of plant secondary metabolites	Ар	
2	To demonstrate the extraction and estimation of phytochemicals	Ар	
3	To identify the plant genomic DNA and rbcL gene.	U	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea reciation (Ap)	te (C), Skill (S),	Interest (I)

Module	Module Content	Credits	Hours		
No		0.7	20		
1	Plant secondary metabolites-Qualitative Analysis 1. Test for Tannins	0.5	30		
	2. Test for Saponins				
	3. Tests for Flavonoids				
	4. Tests for Glycosides				
	5. Test for Terpenoids				
2	Extractions, Isolation and Analysis of Phytochemicals:	1	60		
-	1. Different Extraction Protocols: Infusion, Decoction,	-	00		
	Maceration, Soxhletextraction				
	2. Extraction of TotalAlkaloids				
	3. Isolation and Colorimetric estimation of Solanine fromPotato				
	4. Isolation and Spectrophotometric estimation of				
	Tropane alkaloids from Datura Species				
	5. Isolation and Spectrophotometric estimation of				
	Cinchona Alkaloids from Cinchona bark				
	6. Extraction of Oleoresins from black pepper and ginger				
	7. Isolation and spectrophotometric analysis of Tannins				
	8. Estimation of Total Phenols				
	9. Estimation of Flavanols				
	10. Estimation of Tannins				
3.	Extraction and assay of Enzymes	1	60		
	1. Polyphenol oxidase				
	2. Peroxidase				
	3. Phenylalanine ammonia lyase	0.7	•		
4	Determination of Free radical scavenging activity of Plant	0.5	30		
	extracts, Bioactivity guided fractionation of Plant bioactive				
	molecules				
5	Plant molecular Biology	1	30		
5	1. Isolation of plant genomic DNA	1	50		
	2. Identification of rbcL gene by PCR techniques				
	Total Credits of the Course	4			
	Books for Reference				
Compuls	bory Reading:				
-	luctory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Naro	sa		
	Publishing House, New Delhi, ISBN 81-7319-302-9, p 195 – 303				
8. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers,					
	Ludhiana ISBN 81-7663-067-5, p 12 - 182.				
Further	Reading:				
9. Hawk's Physiological Chemistry, Bernard L. Oser (ed) TATA McGRAW Hill Publishing			blishing		
-	Company LTD, New Delhi, p 60 – 127, 1317- 1334				
10. Experimental Biochemistry: A Student Companion, BeeduSasidhar Rao & Vijay					
	pande (ed), I.K International Pvt. LTD, New Delhi ISBN 81-88237	7-41-8, p 1	3- 17, p		
49 - 72					

- **11.** Practical Biochemistry, R.C. Gupta & S. Bhargava (eds) CBS Publishers and Distributors, New Delhi, ISBN 81-239-0124-0 p 9 27
- 12. Practical Clinical Chemistry, Harold Varley, CBS Publishers and Distributors, New Delhi,

Teachingand LearningApp roach	Laboratory Procedure (Mode of transaction) Direct Instruction: lecture, Explicit Teaching, Demonstration, Hands on experimental sections, Skill acquisition by laboratory training
Assessment Types	Mode of Assessment E. Continuous Internal Assessment (CIA) 1. Internal Laboratory Skill Tests of maximum 20 marks 2. Seminar Presentation – Laboratory material and methods Maximum marks 10 3. Write a detailed report on instrumentation – 10 marks F. Semester End Practical examination – 60 marks

Approval Date	
Version	
Approval by	
Implementation Date	

Elective Papers

	MAHATMA GANDHI UNIVERSITY
FOTTAVAN	SBS M P E 59: ENVIRONMENT BIOTECHNOLOGY

School Name	School of Biosciences

Programme	Msc Biotechnology/ Biochemistry/ Biophysics/ Microbiology					
Course Name	ENVIRONMENT BIOTECHNOLOGY					
Type of Course	Elective					
Course Code	SBS M P E 59					
Course Summary & Justification	Environmental Biotechnology is offered to train the students both in the theoretical and practical aspects of identifying environmental problem where a solution is possible through Biotechnological methods Enabling students in formulating ideal solution to environment problems based on green chemistry concept is the need of this time . Students have to earn a sense of Environmental concern and to get experience in the applications of Biotechnological methods for environmental protection.This course is also introduced as a part of the national policy effort to incorporate environmental education into the curriculum of all P.G Programme of all universities in India.					
Semester			Fourt	1		
Total StudentLearningTime (SLT)	Learning Approach Lecture Tutorial Practical Others Total LearningHours					
	Authentic learning6020040120Collaborative learning Independent learning6020040120					
Pre-requisites	None					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	On completing this course, the student will be able to	u	
	Understand the effect of a specific environmental problem identified		
2	Apply the most suitable biological method for the effective treatment of the pollutant	An	
3	Explore into the possibility of applying the developed	U	

	method in the field.				
4	Communicate effectively in a chosen topic both verbally and in writing	Ар			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module No	Module Content	Credits	Hrs
1	Industrial pollution causes, problems: Air, Soil and Water pollutants, Types of pollutants characterization, Persistence and Biomagnification of Xenobiotics, recalcitrant molecules, nitroaromatic polychlorinated, biphenyls and dioxans, synthetic polymers, alkylbenzyl sulphonates, Hydrocarbons, Pesticides, Phenolics, Anilines, Inorganic pollutants, Heavy metals. Detection and Quantification of pollutants. Environmental laws	0.5	10
2	Biodegradation, Process and application: Microbial infallibility, types of biodegradation, factors affecting biodegradation, enzymes involved in biodegradation, catabolic plasmids, Molecular Approaches, Biogeochemical cycles, Bioleaching. Biodegradation of Hydrocarbons, cellulose, lignin, Phenoland pesticides. Application of TOC, FT/IR, GC-MS analysis in biodegradation studies	0.5	10
3.	Industrial wastewater: Types of industrial effluents, characterization of the wastewater. Chemical Oxygen Demand, Biological Oxygen Demand, Total organic carbon, Nitrogen contents, Suspended solids. Total heterotrophic bacterial population. Bacteriological analysis of drinking water, Presumptive, completed, and confirmed test. Treatment strategies primary, Secondary and tertiary treatment Physical, Chemical and Biological treatment. Floc based and film based strategies, aerobic and anaerobic methods	1	20
4	Biological treatment of industrial wastewater: Activated sludge process, different stages, Types. Oxic/Anoxic, Extended aeration methods, Nitrification and denitrification. Trickling filter process, Different stages Types, Biofilm applications, Rotating Biological contactor,UASB, Submerged aerobic filters, Fluidized Bed Reactor, Packed bed reactor, Oxidation lagoons. Bioreactors for wastewater treatment. Advanced treatment strategies Teritiary treatment methods, Disinfection, Chlorination, Chlorination dosage chlorination derived byproducts	0.5	10

5	Solid waste management: Solid waste, Types, Problems, Characterization and sorting of wastes. Municipal and industrial waste management, Land fills composting, stages in composting, Types of composting vermicomposting. Methanogenesis, stages in anaerobic digestion, methanogens Anaerobic reactors Biogas generation, Household treatment strategies, Present problem and Possible remedies	0.5	10
	Total Credits of the Course	3	

TeachingandLearningApproach	Classroom Procedure (Mode of transaction)				
	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co- operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment Types	Mode of Assessment				
	Continuous Internal Assessment (CIA)				
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks C. Semester End examination – 60 marks 				

REFERENCES

Compulsory Reading:

1. Microbial Ecoology, Atlas and Bartha, Pearson Publication

2.Comprehensive Biotechnology-2 nd Edition,Murray Moo Young ISBN-9780444533524,Pergman

3.Industrial Microbiology, Samuel Cate Prescot and Cecil Gordan Dunn,Third edition Mac Graw-Hill

4.Waste water microbiology, Gabriel Bitton, Third edition, Wiley, ISBN-9780471717966

Further Reading:

- 1. Environmental Biotechnology -Theory and application , Gareth m Evans and Judith C Furlong , Wiley 2003
- 2. Envoronmental Chemistry-Anilkumae DE,

Approval Data	
Approval Date	
Vancian	
Version	
4 11	
Approval by	
Implementation Date	
Implementation Date	

Actual angurant	MAHATMA GANDHI UNIVERSITY SBS M P E 60: OMICS IN BIOTECHNOLGY
School Name	School of Biosciences
Programme	MSc Biotechnology
Course Name	Omics in Biotechnology
Type of Course	Elective
Course Code	SBS M P E 60
Course Summary	1. The course describes new approach, the concept of "OMICS" in
& Justification	various levels. It is a multi-disciplinary emerging field that
	encompasses genomics, epigenomics, transcriptomics, proteomics, and metabolomics.
	2. The course content explain the high-quality techniques, methods & analysis from genome level will help in the complete understanding of a biological process. These approaches are targeted towards understanding complex systems more thoroughly at the molecular level.
Semester	Fourth

Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisites	Basics of Molecular E	Biology				

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	On completing this course, the student will be able to Explain genome and types of genomics, tool and methods in genomic study, as well as Genome structure of selected organisms.	U/E	
2.	Explain the Proteomics, Transcriptomics & Metabolomics & Describe the tool and methods employed to study. Students have able to explain the various application of Proteomics, Transcriptomics & Metabolomics study	An/A	
3.	Students have able to illustrate the techniques employed for metagenomic analysis and application of metagenomic study	S/I	
4.	Describe the classification and types of databases & applications of data bases	U/R	
5.	Communicate effectively about a chosen topic in Omics in Biotechnology both practically and theoratically.	C/S	
*Remen	her (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea	ute (C), Skill (S),	Interest (I)

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT			
Module	Module Content	Credits	Hrs
No			
1	Genome & Genomics: Definition of Genome &	1.0	20
	Genomics.Types of genomics,, Functional Genomics.Structural		
	genomics&Comparative genomics, Tools in		
	Genomics, Structural genomics: - Classical ways of genome		
	analysis, large fragment genomic libraries; Physical &		
	Genetic mapping of genomes; Genome sequencing,		
	sequence assembly, annotation& bioinformatics.Functional		

	Total Credits of the Course	3	
	modification databases	2	
	databases - PDB- Metabolic databases – post translational		
	PROSITE and BLOCKS - 2D PAGE databases – Structure		
	sequence databases - SWISS-PROT and TrEMBL —		
	resources, GRAIL, GENSCANProteome databases Protein		
	Resources: DNA sequence databases-specialized genomic		
	databases,Pattern and profile databases Genome Information		
	databases- Secondary databases-composite protein pattern		
	databases-primary sequence databases- Composite sequence		
4	Biological data bases: Classification databases. Biological	1.0	20
	data.Application of metagenomics		
	library,Screen or sequence,Analysis of metagenomic		
	sampleClone DNA,Insert into plasmid,Develop sample		
	metagenomics-Isolating DNA from an environmental		
3.	Metagenomics: Definition of metagenomics, Techniques in	0.5	10
	health and industry		
	techniques. Applications of proteomics in agriculture, human		
	electrophoresis and Mass spectrometric and computational		
	through emerging metabolomic techniques like 2D gel		
	analysis of protein-protein interactions, and metabolic profiling		
	of proteins and metabolites:. Proteomics approaches to the		
	composition, Motifs and patterns, Analysis and characterization		
	,Applications of proteomics Protein identity based on		
	,Protein identification by peptide mass fingerprinting		
	Liquid chromatography, Mass Spectrometry (ESI and MALDI)		
	metabolomicsTools of proteomics- SDS PAGE, 2D PAGE,		
Ζ.	concepts, Introduction to transcriptomics, proteomics and	0.5	10
2.	and man.Applications of genomics Proteomics,Transcriptomics & Metabolomics: Basic	0.5	10
	generation sequencing methods; Structure of genomes: bacteria, yeast, nematode, Arabidopsis, rice, zebra fish, mouse		
	analysis; Mutants and RNAi in functional genomicsNext		
	genomics:-DNA chips and their use in transcriptome		

TeachingandL earningAppro ach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	Mode of Assessment FF. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10

3. Write a detailed report on a given topic based on research findings and literature search – 10 marks		
GG. Semester End examination – 60 marks		

Compulsory]	Reading:	
1.	Introduction to proteomics, Daniel. C. Libeler, Humana Press 2002	
2.	Thompson, J.D., Schaeffer-Reiss, C., and Ueffing, M. 2008. Functional	
	Proteomics. Methods and Protocols. Humana Press, New York.	
3.	Metabolomics- Methods and Protocols by Wolfram Weckwerth, Humana	
	Press.	
4.	Aurthur M Lesk Introduction to Bioinformatics .Oxford University press.	
Further Read	ing:	
1.	Bostjan Koba., Mitchell Guss & Thomas Habs Structural Proteomics. Humana	
	Press.	
2.	Twyman, R.M. 2004. Principles of Proteomics. Taylor & Francis	
3.	Mass Spectrometry for Biotechnology by Gary Siuzdak, Academic Press.	
4.	4. Proteomics for Biological Discovery by Timothy Veenstra and John Yates,	
	Wiley.	
5.	Lipidomics- Technologies and Applications by Kim Ekroos, Wiley-VCH.	
6.	Web/Journal Resources.	
7. Transcriptomics: Expression Pattern Analysis, Virendra Gomase, Somnath		
	Tagore; VDM Publishing, 2009 – Science	
8.	Brown TA. 2007. Genome III. Garland Science Publ.	
9.	Campbell AM & Heyer L. 2004. Discovery Genomics, Proteomics and	
	Bioinformatics. Pearson Education.	
10.	Jollès P & Jörnvall H. 2000. Proteomics in Functional Genomics:	
	Protein Structure Analysis.	
11.	Kamp RM. 2004. Methods in Proteome and Protein Analysis. Springer.	
12.	Primrose SB & Twyman RM. 2007. Principles of Genome Analysis and	
	Genomics	
13.	Blackwell. Sensen CW. 2005. Handbook of Genome Research. Vols. I, II.	
	Wiley CVH.	

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 61: MOLECULAR PHYLOGENY

School Name	School of Biosciences					
Programme	Msc Biotechnology/ Biochemistry/ Biophysics/ Microbiology					
Course Name	MOLECULAR PHYLOGENY					
Type of Course	Elective	Elective				
Course Code	SBS M P E 61					
Course Summary & Justification	Molecular pl practical dime 2. The learner	hylogeny ension will deve substitutie submissio	. The co elop an u on, tree b n tools	ourse has understand uilding alg for nucl	a theo ling abo gorithms	techniques of retical and a out models of s, data mining ad data and
Semester	Fourth					
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total LearningHou rs
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisites	Basics of genome organisation and organic evolution, concepts of biological classification					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	On completing this course, the students will be able to Compare and narrate the models of nucleic acid	An	
	substitution, tree building algorithms, data mining tools, and submission tools for nucleic acid data		
2	Deposit nucleic acid sequences in databases and able to perform data mining	S	

3	Perform sequence alignment and editing	S		
4	Analyse sequence alignments by suitable software and perform phylogenetic analysis	S		
5	Carry out a phylogenetic analysis from raw sequence data up to final conclusions	S		
6	Communicate effectively about a phylogenetic problem both verbally and in writing.	An/ C		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Module No	Module Content	Credits	Hrs
1	Basic concepts of molecular evolution: Genetic information, population dynamics, evolution and speciation, data used for molecular phylogenetics, phylogenetic tree, methods for inferring phylogenetic trees, networking, RNA world	0.75	15
2	Sequence databases and data base searches: Sequence databases, composite databases, database mirroring, and search tools, data base searching by sequence similarity – BLAST and FASTA, multiple sequence alignments CLUSTAL, MUSCLE, T-COFFEE	0.5	10
3.	Phylogenetic inference: Genetic distances and nuclear substitution models, phylogenetic inference based on distance methods- UPGMA, Neighbour Joining, Minimum Evolution, Least square	0.5	10
4	Phylogenetic inference: Maximum Likelihood and Bayesian phylogenetic analysis, phylogenetic analysis based on parsimony, phylogenetic analysis using protein sequences, testing tree reliability – Bootstrapping and jackknifing	0.5	10
5	Testing models and trees: Models of evolution and phylogeny reconstruction, model fit, likelihood ratio tests, Practising MEGA, Paup*, RaxML, Mr Bayes, J Model Test, Sequence submission tools- SEQUIN and BankIt	0.75	15
	Total Credits of the Course	3	

TeachingandLearningApproach	Classroom Procedure (Mode of transaction)			
	Direct Instruction: Brain storming lecture, Explicit			
	Teaching, E-learning, interactive Instruction:, Active co-			
	operative learning, Seminar, Group Assignments Authentic			
	learning, , Library work and Group discussion,			
	Presentation by individual student/ Group representative			

Assessment Types	Mode of Assessment
	A.Continuous Internal Assessment (CIA)
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks b. Semester End examination – 60 marks

Compulsory	y Reading:
1.	Molecular evolution And Phylogenetics, Masatoshi Nei and Sudhir Kumar, Oxford University Press, ISBN 0195135857
2.	Baldauf, SL (2003) "Phylogeny for the faint of heart: a tutorial." Trends in Genetics; 19(6):345-351.
Further Rea	ading:
3.	The phylogenetic Hand book, 2 nd Edition, Philippe Lemey, Marco Salemi, Anne –Mieke Vandamme, Cambridge University Press, ISBN-13 978-0-511- 71963-9
4.	Hall, BG. (2004) Phylogenetic Trees Made Easy: A How-To Manual, 2nded. Sinauer Associates, Inc.: Sunderland, M A. ISBN: 978-0-87893-606-9
5.	Hartwell, LH, L Hood, ML Goldberg, AE Reynolds, LM Silver, RC Veres (2008) Genetics: From Genes to Genomes, 3 rd Ed. McGraw-Hill: New York ISBN-13: 978-0073525266ISBN-10: 007352526X

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 62: PLANT MICROBE INTERACTIONS

SchoolName	School of Biosciences	School of Biosciences				
Programme	M.Sc. Microbiology					
Course Name	PLANT-MICROBE INTERACTIONS					
Type of Course	Elective					
Course Code	SBS M P E 62					
Course Summary & Justification	This course develops concepts in plant- microbe interaction The major objective of this paper is to give an insight into the consequences, on population and ecosystem level, of compatible and incompatible interactions, to understand infection process and control measures and to familiarize with the microbial production of plant metabolites.					
Semester		I	Fourth			
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutoria 1	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics of agricultura	l microbio	logy			

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Comprehensively discuss interactions between plants and microbes as well as the defense reactions of the host plant	U/R/ An	
2	Gain insight into genetics of host-pathogen interactions and resistance mechanism in plants.	C/ I/An	
3	Comprehend various methods to analyse plant diseases	S/An/A	

	and biological methods of disease control		
4	Analyse why plants and microbes react in certain ways in pathogenic and symbiotic interactions	U/R/An	
5	Understands the role of microbes in developing plant immunity	U/R	
6	Have an in-depth knowledge on biopesticides and their role in pest control	An/ C	
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea Appreciation (Ap)	ute (C), Skill (S), In	nterest (I)

Module No	CONTENT Module Content	Credits	Hrs
1	Different interfaces of interactions -soil-plant-microbe interactions leading to symbiotic (rhizobial and mycorrhizal), associative, endophytic and pathogenic interactions	0.5	10
2	General concepts of plant immunity. PAMP-triggered immunity (PTI) and Effector triggered immunity (ETI). Outer membrane vesicles (OMVs) and their involvement in plant immunity. The type III secretion system. Hypersensitive response. Genetic basis of plant defences. Quorum-sensing in bacteria and their role in plant defence mechanisms. Phytohormones and antibiotics as plant therapeutics.	1.0	20
3.	Plant pathogens and molecular basis of pathogenesis .Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. basal and induced defence mechanisms. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen interaction. Virulence determinants of plant pathogenic bacteria-Enzymes, Toxins, pili, siderophores, secretion systems	1.0	20
4	Microbial pest control: Bacillus thuringiensis-mode of action, Biocontrol agents– uses and practical constraints Biofungicide and bioherbicides. Plant growth promoting rhizobacteria. Use of plant–microbe symbiosis for remediation of pollutants and carbon (C) sequestration	0.5	10
	Total Credits of the Course	3	

TeachingandLearningApproach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction: Active co- operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment Types	 Mode of Assessment D. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search – 10 marks E. Semester End examination – 60 marks 				

REFERENCES	
Comp	oulsory Reading:
_	
1.	Subba Rao, N.S. 2005. Soil Microorganisms and Plant Growth, Oxford and
	IBH Publishing Co.
2.	B. Lugtenberg (ed). 2015.Principles of plant microbe interactions, Springer
Further Rea	ding:
1.	Microbial control and pest Management – S.Jayaraj.
2.	Paul, E.A. 2007. Soil Microbiology, Ecology and Biochemistry, Academic
	Press.
3.	M.Gillings and Holmes .2004.Plant microbiology-Bios Scientific publishers.
4.	Kosuge T & Nester EW. 1989. Plant-Microbe Interactions: Molecular and
	Genetic Perspectives .Vols I-IV. McGraw Hill.
5.	Verma DPS & Kohn TH. 1984. Genes Involved in Microbe-Plant Interactions.
	Springer Verlag.
6.	Gary Stacey, Noel T. Keen, 1995. Plant-Microbe Interactions. Vols I-VI
	Springer Science & Business Media.
7.	Jeng-Sheng Huang 2001. Plant Pathogenesis and ResistanceBiochemistry and
	Physiologyof Plant-Microbe Interactions .Springer Verlag

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 63: HUMAN VIROLOGY

SchoolName	School of Biosciences					
Programme	M.Sc Microbiology/B	M.Sc Microbiology/Biochemistry/Biotechnology/Biophysics				
Course Name	HUMAN VIROLOGY					
Type of Course	Elective					
Course Code	SBS M P E 63	SBS M P E 63				
Course Summary & Justification	This course on Human Virology deals with an important area of Medical Microbiology The objective of the course content is to create a sound awareness in human viruses and viral diseases. their The course will augment the student's knowledge in pathogenesis of viral diseases and their laboratory diagnosis and prophylaxis.					
Semester			Fourth			
Total StudentLearningT ime (SLT)	Learning Approach Lecture Tutoria l Practic al Others Total LearningHou					
	Authentic learning Collaborative learning6020040120Independent learning6020040120					
Pre-requisite	Basic understanding on Human Anatomy, Physiology and Biochemistry Knowledge in Basic Virology, Molecular Biology and Immunology					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1.	On completing this course student will be able to analyse comparatively the structure and properties of important human viruses	U/An	
2.	Students will be able to understand and evaluate the	U/E	

	mechanism of pathogenesis of viral diseases		
3.	Students will become aware of the methods applicable in viral diagnostics	U/A	
4.	Students will be able to analyse the various mechanisms of viral oncogenesis	An	
5,	Students will be able to understand and compare the mechanisms of action of various antiviral agents	U/An	
6	Students will be able to understand and evaluate the methods of prophylaxis of viral diseases in humans	U/E	

Modu	Module Content	Credits	Hrs
le No			
1	Study of properties of human DNA viruses viz. Pox, Herpes,	0.5	10
	Adeno, Papova, and Parvo viruses. Pathogenesis and		
	laboratory diagnosis of diseases caused by these viruses		
2	Study of properties of human RNA viruses viz. Picorna,	1.0	20
	Orthomyxo, Paramyxo, Rhabdo, and Rubella viruses		
3.	Arboviruses and Hepatitis viruses - Properties. Pathogenesis	1.0	20
	and laboratory diagnosis of diseases caused by these viruses.		
	Viral haemorrhagic fevers, SARS CoV-2, HIV, Properties,		
	pathogenesis and laboratory diagnosis of Slow virus		
	infections, Prion diseases		
4	Viruses and cancer, Viral oncogenesis, Viruses implicated in the cancers of humans, Prophylaxis of viral diseases, Types of viral vaccines, antiviral agents and their mechanisms of action, Interferons	0.5	10
	Total Credits of the Course	3	

TeachingandL earningAppro	Classroom Procedure (Mode of transaction)
ach	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative

Assessment	Mode of Assessment
Types	F. Continuous Internal Assessment (CIA)
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 Write a detailed report on a given topic based on research findings and literature search – 10 marks Semester End examination – 60 marks

Compulsory Reading:

- 1. Jawetz, Melnick & Adelberg's Medical Microbiology27 th Edition Carrol, Butel, Morse, Mietzner Mc Graw Hill
- 3. Ananthanarayan & Panicker's Text book of Microbiology.9th Edition Arti Kapil (Ed) University Press (India) Pvt.Ltd.

Further Reading:

Further Reading:

- 1. Human Virology Fourth Edition Leslie Collier, John Oxford & Paul Kellam University Press.
- 2. Fundamental Virology 5th Edition David M.Knipe& Lippincott Williams & Wilkin
- 3. Viruses Biology, Applications & Control

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 64: PHYSIOLOGICAL BIOPHYSICS

Scho	ol Name	School of Bi	oscien	ces				
Progra	mme	M.Sc. Biochemistr	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics					
Course	e Name	PHYSIOLOGI	PHYSIOLOGICAL BIOPHYSICS					
Туре о	f Course	Elective						
Course	e Code	SBS M P E 64						
	of Academic Qualifications	Dr Harikum	aran Nai	r R				
	e Summary &	The course is desig	ned to pro	ovide the f	ìunda	menta	al princip	oles of modern
Justific	cation	physiology, protein	science a	and structu	ıral b	iolog	y, and to	prepare
		students for higher	learning a	and answe	r que	stions	s like :-H	low do solutes
		transport across cel	l membra	nes? Wha	t is tł	ne ion	ic basis o	of the
		membrane potentia	l? How d	oes the cel	ll me	mbrar	ne behave	e like an
		electrical circuit? W	electrical circuit? What is the molecular physiology of muscle					iscle
		contraction? What	are the me	echanisms	ofh	emod	ynamic?	What is the
		biophysical propert	y of lung	mechanic	s?			
Semest	ter	Fourth						
Total S Time (Student Learning SLT)	Learning Approach	Lecture	Tutorial	Prac	ctical	Others	Total Learning Hours
		E.g., Authentic learning Collaborative learning Independent learning	54	18		0	28	100
Pre-ree	quisite	Basic Knowledge	in Bioscie	ences				·
No.	E	xpected Course Outcome			Learning Domains		PSO No.	
1	Understand basic	level of cell physiolo	level of cell physiology3. 4.			U		
2	Explain cell trans	port and communicat	tion in a c	ell			R	

3	_	ain how lung and cardiac dynamic property is important stain life.	R				
	10 54						
4	Unde	rstand force generating capacity of muscles	U				
*Remen Appreci		Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),	Skill (S), Interest	(I) and			
Modu	le No	Module content		Credits offered			
1	Chemical composition of body, movement of molecules across cell membranes, control of cells by chemical messengers						
2		Design of circulatory system, pressure, flow and resistant system, physical characteristics of blood, haemo dynamic equations, genesis & spread of cardiac impulse, regulation of blood pressure & blood volume, hearth mechanical events of cardiac cycle, cardiac output, card responses to stress	mics principles cardio dynami beat coordinati	& cs,			
3.	Lung mechanics, ventilation, gas exchange process, gas diffusion, gas transport, pulmonary circulation, neural generation of rhythmical breathing, control of respiration by partial pressure of gases and hydrogen ion concentration, ventilation in response to stress, pulmonary function tests						
4		Ionic composition & distribution of body fluids, division kidney tubules, concept of renal clearance, regulation and potassium balance, calcium regulation, hydrogen ion mechanics, acidosis, alkalosis, basic concepts of en regulation of total body energy stores, regulation of to Molecular mechanism of muscle contraction, mechanic contraction and whole muscle contraction, muscle en control of body movement, maintenance of upright pot walking, vestibular system and equilibrium, state of co motivation and emotion, cerebral dominance and language	of sodium, wa n regulation, re- ergy expenditu- body temperatu- ics of single-fil- nergy metabolis- sture and balan- consciousness,	ter nal ire, ire. ber sm,			
		Total Cr	redits of the cou	rse 3			
		Books for References					

Compulsory Reading

- **1.** Brobeck J.R, Best and Taylor's Physiological bases of medical practice
- 2. Basar E, Biophysical and physiological system analysis
- **3.** Guyton A.C, textbook of Medical Physiology
- 4. Robert Glambos, Nerves and muscles

Further Reading:

- 1. Biophysics A Physiological Approach, Patric F Dillon (2012)
- 2. Comprehensive Biophysics, Volume I-IX, Edward H Egelman (2012)
- 3. Introduction to experimental Biophysics, Jay Nadeau (2012)
- 4. Physiology, Biophysics and Biomedical Engineering, Andrew W Wood (2012)

Approval Date	
Version	
Approval by	
Implementation Date	

THE REAL PROPERTY OF THE REAL	MAHATMA GANDHI UNIVERSITY
विद्याया अमृतमागन्त	SBS M P E 65 GOOD LABORATORY PRACTICES

SchoolName	School of Biosciences			
Programme	MSc Biochemistry/ Microbiology/ Biotechnology/ Biophysics			
Course Name	GOOD LABORATORY PRACTICES			
Type of Course	ective			
Course Code	SBS M P E 65			
Course Summary & Justification	To equip the students with appropriate knowledge, skills to undertake general and quality management of laboratory practices and procedures. To adequately address quality issues and improve the overall delivery of clinical and public health laboratory services in their facilities/organizations. To sensitize the students with medical and public health ethics issues and to ensure its application in teaching			

	and practice.					
Semester			Fourth			
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	20	0	40	120
Pre-requisite	Basics Knowledge in	Basics Knowledge in Biosciences				

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand basic good laboratory practice	U	
2	Appreciate how to conduct research safely and efficiently	Ар	
3	Understand the requirements for safe working practices and risk assessment	U	
4	Apply experimental design and the need for controls	А	
5	Consider ways in which student can maximise research effort	С	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

	E CONTENT Modulo Content	Credita	Hrs
Module No	Module Content	Credits	nrs
1	Introduction to good laboratory practices (GLP) and its application, history of GLP, fundamental points of GLP	0.5	10
2	Resources-personnel, Facilities - buildings and equipment, Characterization- test item, test system, rules for performing studies-the study plan or protocol, standard operating procedures (SOPs) raw data and data collection- records and recording, study report, archives and archiving, quality assurance, audit and inspections, implementation of GLP	1	20
3.	Applications of the GLP principles to field studies, applications of the GLP principles to short term studies, applications of the GLP principles to in vitro studies	0.5	10
4	Ethics in research- locating ethics in research, justice in research, science and society, ethical issues in biotechnology, ethical guidelines related to human experimentation, guidelines regarding animal use in research, institutional biosafety monitoring mechanisms.	1	20

Total Credits of the Course	3	60

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) 1. Internal Tests of maximum 20 marks 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10 3. Write a detailed report on a given topic based on research findings and literature search – 10 marks B. Semester End examination – 60 marks

Compulsory Reading

- 1. Handbook on Good Laboratory Practice- World Health Organization
- Ethical Guidelines for Biomedical Research on Human Participants- Indian Council of Medical Research
- Guidelines on the regulation of scientific experiments on animals- Ministry of Environment and Forests, India
- 4. Textbook on Ethics in Research- European Commission, Publications Office of the European Union

Further Reading:

- 1. Good Laboratory Practice Regulations, 4th edition edited By Sandy Weinberg-CRC Press, 2007
- 2. The Indispensable Guide to Good Laboratory Practice (GLP): Second Edition 2nd Edition- Mark Gregory Slomiany- Springer, 2009

Approval Date

Version	
Approval by	
Implementation Date	

	MAHA	ATMA G	ANDHI (JNIVERS	ITY	
विवाया अमृतमघन्त्र	SBS M	PE 66: N	IEDICAL	BIOPHYS	ICS	
School Name	School of Bi	oscien	ces			
Programme	M.Sc. Biochemistr	y/Microl	oiology/Bi	otechnolo	gy/Biop	hysics
Course Name	MEDICAL BIOP	HYSICS				
Type of Course	Elective					
Course Code	SBS MP E 66					
Names of Academic Staff & Qualifications	Mrs. Resmi	SS				
Course Summary & Justification	The course is to introduce the student to important areas of med Biophysics like Bioelectric signals, Laser, Medical imag Sonography, Fluoroscopy, Nuclear medicine, Radiation therapy ergonomics. and to get an insight on how experimental methods theoretical approaches from physics can give answers related to structure and functions of biological system.					lical imaging, n therapy and al methods and
Semester	Fourth					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	E.g., Authentic learning Collaborative learning Independent learning	54	18	0	28	100
Pre-requisite	Basic Knowledge	n Bioscie	ences			
No. I	Expected Course Ou	tcome			rning nains	PSO No.

1	Expla	ain bioelectric signals and its recording	R				
	Desc	ribe types of electrodes, their design, properties and					
	uses.						
2	Unde	Understand principle of operation of LASER and its applications U/A					
3	-	in different types of imaging technique and applications of ar medicine	U/ An				
4	Desc	ribe the importance of radiotherapy	U				
5	Narra	te different areas of ergonomics	U				
	ember (R), ciation (Aj	Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), p)	, Skill (S), Interest (I)	and			
Modu	ule No	Module content		Credits offered			
1		Origin and Characteristics of Bioelectric signals & record types Design and properties and Utility, Skin cont Electrodes, noise suppression techniques, recording Display systems, Patient Monitoring systems, Biom Computer Applications in medical field, Patient Saf makers, Defibrillators, Hemodialysis machines, Short wave Diathermy, Ultrasonic Therapy, Pain relief stimulation, Surgical Diathermy, Laser, principle of Laser tissue interaction, Biomedical applications in surge	act impedance o system, Medica edical Telemetry ety. Cardiac pace wave and Micro through electrica operation, Types	f 1 , e 0 1			
2		Principle, Working of Blood flow Meters, Pulmonary f Blood gas analyzer, Oximeters, Audiometer. Techniques. Physical aspects of Medical-imaging, P System, Medical utility of X-ray imaging, Fluoroscopy, Computerized Axial Tomography, Mammography, An Myelography, Magnetic resonance imaging, Ultrasonogr	Medical-Imaging rinciple, Practica Xeroradiography giography,	2 1			
3		Basic principles of Nuclear Medicine, Diagnostic use Invivo& In-vitro procedures, (Single isotope, Double i Radio immunoassay counting system, General principle	sotope methods)	,			

organ scanning, Renal imaging, Cardiac imaging, Thyroid scanning,	
Blood volume determination by isotope method, Rectilinear scanners &	
Gamma scintillation camera, Positron emission Tomography (PET),	
Single Photon emission computer Tomography (SPECT), Radio	
pharmaceuticals & their Diagnostic applications	
Concepts of teletherapy & Brachytherapy, Co-60 Therapy, Basic	0.5
principles & scope of radio therapy, Benign & Malignant tumors, Tissue	
olerance dose &Tumor lethal dose, Medical dosometry, Dose	
ractionation, Palliative & Curative therapy, Treatment planning, Isodose	
listribution, Patient data, Correction & Setup, Field shapping, Skin dose	
and field separation, brachytherapy, Sources, Calibrations, Dose	
listribution implant dosimetry. LINAC (Linear accelators). Ergonomics,	
Muscle mechanics, Load velocity relation, Length tension relation, Entire	
State, Role of elastic components in muscle contraction, Ergonomic	
problems of computer users.	
Total Credits of the course	3
Books for References	
eading:	
Biomedical Instrumentation: R.S Khandpur, Tata McGraw-Hill Publishing	company
	Alood volume determination by isotope method, Rectilinear scanners & Gamma scintillation camera, Positron emission Tomography (PET), ingle Photon emission computer Tomography (SPECT), Radio harmaceuticals & their Diagnostic applications Foncepts of teletherapy & Brachytherapy, Co-60 Therapy, Basic rinciples & scope of radio therapy, Benign & Malignant tumors, Tissue oblerance dose &Tumor lethal dose, Medical dosometry, Dose factionation, Palliative & Curative therapy, Treatment planning, Isodose istribution, Patient data, Correction & Setup, Field shapping, Skin dose and field separation, brachytherapy, Sources, Calibrations, Dose istribution implant dosimetry. LINAC (Linear accelators). Ergonomics, fuscle mechanics, Load velocity relation, Length tension relation, Entire tate, Role of elastic components in muscle contraction, Ergonomic roblems of computer users. Total Credits of the course Books for References ading:

2. Biomedical Instrumentation and measurements:Leslie Cromwell, Fred.J. Weibell,Erich.

A.Pfeiffer. Prentice-Hall of India Private Ltd

Further Reading:

- 1. Bioinstrumentation: John.G.Webster.Wiley-India
- 2. 2. Medical Physics: Martin Hollins.University of BATH

Approval Date	
Version	
Approval by	
Implementation Date	

МАНАТМА	GANDHI	UNIVERSITY

Sch	ool Name	School of Bi	oscien	ices				
Progr	gramme M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics						hysics	
Cours	se Name	BIOFERTILIZER	RS AND	BIOPEST	TCID	DES		
Туре	of Course	Elective						
Cours	se Code	SBS MP E 67						
	s of Academic & Qualifications	Dr J G RAY						
	se Summary & ication	The course is biopesticides,familian which are being used and conventional bio	rize diffe l as biofer	tilizers for	ultura maint	aining	nportant g the soil a	and plant health,
Semes	ster		<u> </u>	Fourt			5	
	Student Learning (SLT)	Learning Approach	Lecture	Tutorial	Prac	ctical	Others	Total Learning Hours
		E.g., Authentic learning Collaborative learning Independent learning	54	18	()	28	100
Pre-re	equisite	Basic knowledge in	n soil and	d farming				
No.	F	Expected Course Ou	tcome			Learning Domains		PSO No.
1	Develop a critical knowledge on the concept of soil fertility, fertilizers and pesticides]	R/U	
2	Analyse environmental significance of biofertilizers and biopesticides					An		
3	Understand the important soil microbes beneficial to soil fertility					U		
4	Develop the skill diverse kinds	ls to prepare biopest	icides bio	ofertilizers	s of		С	
	mber (R), Understand (iation (Ap)	U), Apply (A), Analyse (A	n), Evalua	ute (E), Crea	te (C),	Skill	(S), Intere	est (I) and

Module No	Module content	Credits offered
1	Different agriculturally important beneficial microorganisms – free living, symbiotic (rhizobial, actinorhizal), associative and endophytic nitrogen fixers including cyanobacteria, taxonomic classification, nodule formation, competitiveness and quantification of N2 fixed	1
2	Different agriculturally important beneficial microorganisms – phosphate solubilizing bacteria and fungi, including mycorrhiza; Different agriculturally important beneficial microorganisms – plant growth promoting rhizobacteria, Different agriculturally important beneficial microorganisms – Biocontrol microbial inoculants; Different agriculturally important beneficial microorganisms for recycling of organic waste and compositing, bioremediators and other related microbes	2
3	Different agriculturally important beneficial microorganisms - selection, establishment, competitiveness, crop productivity, soil & plant health, mass scale production and quality control of bio inoculants. Biofertilizer inoculation and microbial communities in the soil.	3
4	Conventional natural insect control agents such as pyrethrins, rotenones, nicotine, ryanodine, isobutylamides, drimane sesquiterpenoids, withanolides, clerodanes, quassinoids and limonoids - sources, isolation, characterization, synthesis, application and mode of action Phytoalexins, stress metabolites: Sources such as Leguminosae, Solanaceae etc. Acetylene and polyacetylene phytoalexins Pesticides of microbial origin : Sources, chemistry and mode of action of tetranactin, avermectins, milbimycins and spinosad. Herbicides like biolaphos and phosphonothricin. Phytotoxins like Alternaria alternata toxin, tentoxin, cornexistin, hydantoxidin. Other microbials such 1.5105 as NPV based insecticides Allelochemicals and chemical ecology. Application of biotechnology in pest management (ex. Bt)	4
	Total Credits of the course	3
Commellers	Books for References	
Microbiol	A, Fuhrmann JJ, Hartlly PT & Zuberer D. 2005. Principles and Applications of So ogy. 2nd Ed. Pearson Prentice Hall Edu. LG. 1996. Crop Protection Agents from Nature: Natural Products and Analogues. F	
	ding: JD, Trevors JT & Wellington EMH. 1997. Modern Soil Microbiology. CRC Press FJ. 1980. Methods for Evaluating Biological Nitrogen Fixation. John Wiley & Sons	

Approval Date	
Version	
Approval by	
Implementation Date	

SBS M P E 68: HEALTH AND NUTRITION

SchoolName	School of Biosciences					
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics HEALTH AND NUTRITION					sics
Course Name						
Type of Course	Elective					
Course Code	SBS M P E 68	SBS M P E 68				
Course Summary & Justification	The course is designed to provide basic information on nutrition and its importance in providing health.					
Semester			Fourth			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Eg. Authentic learning Collaborative learning Independent learning	50	30	0	40	120
Pre-requisite	Basic understanding of	of food an	d food ing	gredients		

No.		Domains	
1	To describe the basic principles of nutritional biochemistry and different methods of nutritional analysis.	R/U	
2	To identify and compare the different ingredients and nutritional value of food components	А	
3	To identify different diseases associated with nutritional deficiency and overnutrition	U	

Module No	Module Content	Credits	Hours
1	Introduction to nutrition - Food as source of nutrients, functions of food, definition of nutrition, nutrients & energy, adequate, optimum & good nutrition, malnutrition. Basics of energy metabolism, nutrition & dietetics - Unit of measuring energy, calorific value of food, BMR & factors affecting it, SDA of food, calculation of energy requirement, balanced diet, nutrition in health & disease. Nutritional disorders- Epidemiology, clinical features, prevention and dietary treatment for Protein Energy malnutrition, nutritional anaemias.	1	15
2	Food sources: Carbohydrates : Functions, classification, food sources, storage in body. Fats & oils : composition, saturated and unsaturated fatty acids, classification, food sources, function of fats. Proteins - composition, sources, essential & non-essential amino acids, functions, Protein deficiency	0.5	10
3.	Water, Vitamins and minerals- Water - as a nutrient, function, sources, requirement, water balance & effect. Minerals - macro & micronutrients functions, sources. Bioavailability and deficiency of Calcium, Iron, Iodine, Sodium & Potassium (very briefly). Vitamins (water & fat soluble) - definition, classification & functions. Effect of cooking & heat processing on the nutritive value of foods. Processed supplementary foods.	0.5	10
4	Nutritional problems affecting the community- Etiology, prevalence, clinical features and preventive strategies of- Undernutrition - Protein energy malnutrition: Nutritional Anaemias, Vitamin A Deficiency, Iodine Deficiency Disorders. Overnutrition – obesity, coronary heart disease, diabetes. Fluorosis	1	15
	Total Credits of the Course	3	
	Books for Reference		
1. Mu	ory Reading: dambi, SR and Rajagopal, MV. Fundame ntals of Foods, Nutrition a h Ed; 2012; New Age International Publishers	and Diet T	herapy;
2. Muo Pub	dambi, SR, Rao SM and Rajagopal, MV . Food Science; Second Ec l.	l; 2006; N	ew Age
Further 1. Srila	Reading: akshmi B. Nutrition Science; 2012; New Age International (P) Ltd.		

- Swaminathan M. Handbook of Foods and Nu trition; Fifth Ed; 1986; BAPPCO.
- 3. Bamji MS, Krishnaswamy K and Brahmam GNV (Eds) (2009). Textbook of Human Nutrition, 3rd edition. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi.

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative	
Assessment Types	Mode of Assessment C. Continuous Internal Assessment (CIA) Internal Test -20 marks Assignment – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks Seminar Presentation – A topic needs to be presented and discussed with the class- 10 marks D. Semester End examination – 60 marks	

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY
विवया अपूनमफन्त	SBS M P E 69: NEUTROPHIL BIOLOGY

SchoolName	School of Biosciences
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics
Course Name	NEUTROPHIL BIOLOGY

Type of Course	Elective					
Course Code	SBS M P E 69					
Course Summary & Justification	The course is designed to get a detailed idea about the functioning of neutrophils in providing immune response and the mechanisms behind it. This would be helpful for the students, in case they take up research in immunology, cell biology or cellular biochemistry.					
Semester	Fourth					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Eg. Authentic learning Collaborative learning Independent learning	50	20	10	40	120
Pre-requisite	Basic understanding of immunology and blood cells					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To describe the role of neutrophils in imparting and fine- tuning immune response	R/U	
2	To identify and compare different functions of neutrophils	U/A	
3	To identify different techniques to perform neutrophil functional analysis	S	
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea preciation (Ap)	ute (C), Skill (S),	Interest (I)

Module No	Module Content	Credits	Hours
1	Introduction to immune system- innate and adaptive immune system, cells involved in immune system, humoral immunity, cytokines, antibodies, complement system. cell- mediated and humoral immune response	0.5	10
2	Neutrophil Physiology -Neutrophil structure, Granule types- azurophilic, specific, gelatinase, secretory vesicles, Antimicrobial peptides. Neutrophil Subpopulations. Neutrophil activation, apoptosis and clearance. Neutrophils in the resolution of inflammation. Neutrophil in immune cross-talk	0.5	10

3.	Neutrophil defense mechanisms- Chemotaxis, Phagocytosis, degranulation, ROS generation,NADPH oxidase, Neutrophil extracellular trap formation, NETosis vs. apoptosis and necrosis, Cytokine secretion. Diseases associated with altered neutrophil defence- Autoimmunity, cancers, thrombosis.	1	15
4	Techniques to study neutrophils: Neutrophil isolation and maintenance, Cell counting, Phagocytic assays, chemotactic assays, NBT assay, MTT assay, other assays of ROS production, Granule isolation, Neutrophil protein analysis, microscopic analysis of neutrophils and granules – Light and fluorescent microscopy, SEM and TEM	1	15
	Total Credits of the Course	3	
	Books for Reference	I	
Con 1. 2. 3.	 (Eds.). ISBN 978-1-59745-467-4. Biochemistry and physiology of the neutrophil, Steven W Edwards, Cambridge university press Online ISBN-9780511608421 		
Fur	ther Reading:		
1.	Neutrophil function: Mechanisms to diseases. Borko Amulic, Christel Hayes, Kathleen D. Metzlerand Arturo Zychlinsky; Annu. Rev. Immunol		
2.	2. Neutrophil biology: an update. Yoshiro Kobayashi, EXCLI J. 2015; 14: 220–227. doi: 10.17179/excli2015-102.		
3.	 Advances in neutrophil biology: clinical implications. Cowburn AS, Condliffe AM, Farahi N, Summers C, Chilvers ER. Chest. 2008 Sep;134(3):606-12. doi: 10.1378/chest.08-0422. 		-0422.
4.	The Neutrophils: New Outlook for Old Cells. 3rd Edition.Edited by: Dmi Lee Moffitt Cancer Center, USA & University of South Florida, US 84816-836-7	•	,

••	The rocation bill of the cens. Sta Earton Earton Earton (IT	
	Lee Moffitt Cancer Center, USA & University of South Florida, USA). ISBN: 978-1-	
	84816-836-7	

Teachingand LearningApp roach	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group discussion, demonstrations, Presentation by individual student/ Group representative		
Assessment Types	Mode of Assessment		
	A. Continuous Internal Assessment (CIA)		
	Internal Test -20 marks		
	Assignment – Every student needs to write an		
	assignment on a given topic based on the		
	available published literature – 10 marks		
	Seminar Presentation – A topic needs to be		

	presented and discussed with the class- 10 marks
В.	Semester End examination – 60 marks

Approval Date	
Version	
Approval by	
Implementation Date	

	MAHATMA GANDHI UNIVERSITY					
विवागा अमृतमयन्ते	SBS MP E 70: MEDI	CINAL	PLANTS			
School Name	School of Bi	oscien	ces			
Programme	M.Sc. Biochemistry/Microbiology/Biotechnology/Biophysics					
Course Name	MEDICINAL PLANTS					
Type of Course	Elective					
Course Code	SBS MP E 70					
Names of Academic Staff & Qualifications	Dr J G RAY					
Course Summary & Justification	The course is introduce the significance of medicinal plants of ethno- medicine in modern research, familiarize highly valuable medicinal plants for diverse medicinal uses and help biotechnology students to learn more technological applications of plants					
Semester	Fourth					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	E.g., Authentic learning Collaborative learning Independent learning	54	18	0	28	100
Pre-requisite	Basic knowledge in	n Plant S	cience			

No.	Expected Course Outcome	Learning Domains	PSO No.	
1	Develop a critical knowledge on the significance of ethno- medicinal knowledge			
2	Analyse modern applications of ethnomedicines An			
3	Understand the important indigenous medicinal plants of U Kerala U			
4	Develop the skills to apply the ethno-medicinal knowledge C in the modern way			
	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C) ation (Ap)), Skill (S), Interes	t (I) and	
Modu	le No Module content		Credits offered	
1	Introduction to Herbal Medicines: Principles of ide plants, Basics of the botanical description – ba morphology and taxonomy – Plants as medicines in A Siddha and Homeopathy - Ethno botany Major India Antiseptic, Anti-allergic and Expectorants Botanical descriptions – cultivation, processing as c basic knowledge of the phyto-chemistry: Eclipta alba Aloe vera, Melia azadirachta, Coscinium fene. aromaticum, Sesamum indicum, Aegle marmelos, Curcuma longa, Curcuma aromatica, Curcuma ce santanilus, Ricinus communis, Lawsonia inermis mungos; Expectorants: Adathoda beddomei, Tylophora chebula, Ocimum sanctum, Ocimum basilicum, Eu Clitoria ternatea, Glycorrhiza glabra, Kaempferia gala and Piper nigrum	sic principles syurveda – Una n plants known rude remedies a, Mentha pipe stratum, Syzig Ruta gravelo losia, Pterocan and Ophiorr indica, Termin calyptus globu unga, Piper long	of ni – n as and <i>rita,</i> <i>ium</i> <i>ens,</i> <i>pus</i> <i>hiza</i> <i>alia</i> <i>ulus,</i> gum	
2	2 Indian Hallucinogenic, toxic and perfume-yielding plants: botanical descriptions – cultivation, processing as crude remedies and basic knowledge of the phyto-chemistry: Papaver somniferum, Datura alba, Nerium oleander, Strychnos nux-vomica, Cliestanthus colinus, Cannabis sativa, Gloriosa superba, Anamirta cocculus, Citrulus colocynthis, Abrus precatorius, Semecarpus anacardium, Excoecaria agallocha, Digitalis purpurea, Aconitum ferox, Croton triglium, Plumbago zeylanica, Jatropa gossypifolia, Euphorbia neerifolia, Parthenium hyssterophorus and Arisaema triphyllum			
3	Indian plants known as Nerve tonics - botanic cultivation, processing as crude remedies and basic phyto-chemistry: Nerve tonics: Centella asiatica, Co Acorus calamus, Cardiospermum halicacabum, All sativum, Cymbopogon citratus, Moringa olefera, Crocu cordifolia, Bacopa monnieri, Withania somnifera, Plumbago zeylanica, Vitex negundo, Samadera indica, O	knowledge of oriandrum sativ ium cepa, All is sativus, Sida Solanum nigr	the um, ium um,	

4	Indian Medicinal plants for digestive problems and liver remedies	1.0
	(silagogues, carminatives, febrifuges, digestives, hepatoprotectives and	
	laxatives): botanical descriptions - cultivation, processing as crude	
	remedies and basic knowledge of the phyto-chemistry: Tamarindus indica,	
	Trigonella foenum-graceum, Solanum xanthocarpum, Coleus aromaticus,	
	Abelmoschus moschatus, Syzigium cumini, Elettaria cardomomu,	
	Cuminum cyminum, Punica granatumm, Curcuma amada, Ferula	
	asafetida, Oxalis corniculata, Cinnamomum zeylanicum, Vernonia	
	cinerea, Tinospora cordifolia, Andrographis paniculatus, Phyllanthus	
	niruri, Phyllanthus emblica, Terminalia bellerica, Zingiber officianalis,	
	Achyranthes aspera, Carica papaya, Casia alata and Boerahaavia diffusa.	
	Total Credits of the course	3
	Books for References	
Compulsory	Reading:	
1. Tribal me	dicines by Pal DC and Jain SK, Naya Prakash Publishers, Calcutta	
2. Hand boo	ok on herbal drugs and its plants sources, H Panda, National Institute of I	[ndustrial
Research.	Delhi	
·		
Further Read	8	
•	of useful and economically important plants, Ashok K Panigrahi and Ala	ka Sahu,
Central B	ook Agency, Calcutta.	
4. Indian Medicinal Plants Vol ! and II, PS Warrier, Orient Longman		
 Medicinal Plants of India with special reference to Ayurveda, CKN Nair and N Mohanan, Nag Publishers, Delhi. 		

6. Indian Materia Medica Vol: 1 by, Dr. K.M. Nadkarani, Publisher: Popular Prakash, Mumbai

Approval Date	
Version	
Approval by	
Implementation Date	